File size: 9,082 Bytes
52024f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import time, logging
from datetime import datetime
import threading, collections, queue, os, os.path
import deepspeech
import numpy as np
import pyaudio
import wave
import webrtcvad
from halo import Halo
from scipy import signal

logging.basicConfig(level=20)

class Audio(object):
    """Streams raw audio from microphone. Data is received in a separate thread, and stored in a buffer, to be read from."""

    FORMAT = pyaudio.paInt16
    # Network/VAD rate-space
    RATE_PROCESS = 16000
    CHANNELS = 1
    BLOCKS_PER_SECOND = 50

    def __init__(self, callback=None, device=None, input_rate=RATE_PROCESS, file=None):
        def proxy_callback(in_data, frame_count, time_info, status):
            #pylint: disable=unused-argument
            if self.chunk is not None:
                in_data = self.wf.readframes(self.chunk)
            callback(in_data)
            return (None, pyaudio.paContinue)
        if callback is None: callback = lambda in_data: self.buffer_queue.put(in_data)
        self.buffer_queue = queue.Queue()
        self.device = device
        self.input_rate = input_rate
        self.sample_rate = self.RATE_PROCESS
        self.block_size = int(self.RATE_PROCESS / float(self.BLOCKS_PER_SECOND))
        self.block_size_input = int(self.input_rate / float(self.BLOCKS_PER_SECOND))
        self.pa = pyaudio.PyAudio()

        kwargs = {
            'format': self.FORMAT,
            'channels': self.CHANNELS,
            'rate': self.input_rate,
            'input': True,
            'frames_per_buffer': self.block_size_input,
            'stream_callback': proxy_callback,
        }

        self.chunk = None
        # if not default device
        if self.device:
            kwargs['input_device_index'] = self.device
        elif file is not None:
            self.chunk = 320
            self.wf = wave.open(file, 'rb')

        self.stream = self.pa.open(**kwargs)
        self.stream.start_stream()

    def resample(self, data, input_rate):
        """
        Microphone may not support our native processing sampling rate, so
        resample from input_rate to RATE_PROCESS here for webrtcvad and
        deepspeech
        Args:
            data (binary): Input audio stream
            input_rate (int): Input audio rate to resample from
        """
        data16 = np.fromstring(string=data, dtype=np.int16)
        resample_size = int(len(data16) / self.input_rate * self.RATE_PROCESS)
        resample = signal.resample(data16, resample_size)
        resample16 = np.array(resample, dtype=np.int16)
        return resample16.tostring()

    def read_resampled(self):
        """Return a block of audio data resampled to 16000hz, blocking if necessary."""
        return self.resample(data=self.buffer_queue.get(),
                             input_rate=self.input_rate)

    def read(self):
        """Return a block of audio data, blocking if necessary."""
        return self.buffer_queue.get()

    def destroy(self):
        self.stream.stop_stream()
        self.stream.close()
        self.pa.terminate()

    frame_duration_ms = property(lambda self: 1000 * self.block_size // self.sample_rate)

    def write_wav(self, filename, data):
        logging.info("write wav %s", filename)
        wf = wave.open(filename, 'wb')
        wf.setnchannels(self.CHANNELS)
        # wf.setsampwidth(self.pa.get_sample_size(FORMAT))
        assert self.FORMAT == pyaudio.paInt16
        wf.setsampwidth(2)
        wf.setframerate(self.sample_rate)
        wf.writeframes(data)
        wf.close()


class VADAudio(Audio):
    """Filter & segment audio with voice activity detection."""

    def __init__(self, aggressiveness=3, device=None, input_rate=None, file=None):
        super().__init__(device=device, input_rate=input_rate, file=file)
        self.vad = webrtcvad.Vad(aggressiveness)

    def frame_generator(self):
        """Generator that yields all audio frames from microphone."""
        if self.input_rate == self.RATE_PROCESS:
            while True:
                yield self.read()
        else:
            while True:
                yield self.read_resampled()

    def vad_collector(self, padding_ms=300, ratio=0.75, frames=None):
        """Generator that yields series of consecutive audio frames comprising each utterence, separated by yielding a single None.
            Determines voice activity by ratio of frames in padding_ms. Uses a buffer to include padding_ms prior to being triggered.
            Example: (frame, ..., frame, None, frame, ..., frame, None, ...)
                      |---utterence---|        |---utterence---|
        """
        if frames is None: frames = self.frame_generator()
        num_padding_frames = padding_ms // self.frame_duration_ms
        ring_buffer = collections.deque(maxlen=num_padding_frames)
        triggered = False

        for frame in frames:
            if len(frame) < 640:
                return

            is_speech = self.vad.is_speech(frame, self.sample_rate)

            if not triggered:
                ring_buffer.append((frame, is_speech))
                num_voiced = len([f for f, speech in ring_buffer if speech])
                if num_voiced > ratio * ring_buffer.maxlen:
                    triggered = True
                    for f, s in ring_buffer:
                        yield f
                    ring_buffer.clear()

            else:
                yield frame
                ring_buffer.append((frame, is_speech))
                num_unvoiced = len([f for f, speech in ring_buffer if not speech])
                if num_unvoiced > ratio * ring_buffer.maxlen:
                    triggered = False
                    yield None
                    ring_buffer.clear()

def main(ARGS):
    # Load DeepSpeech model
    if os.path.isdir(ARGS.model):
        model_dir = ARGS.model
        ARGS.model = os.path.join(model_dir, 'output_graph.pb')
        ARGS.scorer = os.path.join(model_dir, ARGS.scorer)

    print('Initializing model...')
    logging.info("ARGS.model: %s", ARGS.model)
    model = deepspeech.Model(ARGS.model)
    if ARGS.scorer:
        logging.info("ARGS.scorer: %s", ARGS.scorer)
        model.enableExternalScorer(ARGS.scorer)

    # Start audio with VAD
    vad_audio = VADAudio(aggressiveness=ARGS.vad_aggressiveness,
                         device=ARGS.device,
                         input_rate=ARGS.rate,
                         file=ARGS.file)
    print("Listening (ctrl-C to exit)...")
    frames = vad_audio.vad_collector()

    # Stream from microphone to DeepSpeech using VAD
    spinner = None
    if not ARGS.nospinner:
        spinner = Halo(spinner='line')
    stream_context = model.createStream()
    wav_data = bytearray()
    for frame in frames:
        if frame is not None:
            if spinner: spinner.start()
            logging.debug("streaming frame")
            stream_context.feedAudioContent(np.frombuffer(frame, np.int16))
            if ARGS.savewav: wav_data.extend(frame)
        else:
            if spinner: spinner.stop()
            logging.debug("end utterence")
            if ARGS.savewav:
                vad_audio.write_wav(os.path.join(ARGS.savewav, datetime.now().strftime("savewav_%Y-%m-%d_%H-%M-%S_%f.wav")), wav_data)
                wav_data = bytearray()
            text = stream_context.finishStream()
            print("Recognized: %s" % text)
            stream_context = model.createStream()

if __name__ == '__main__':
    DEFAULT_SAMPLE_RATE = 16000

    import argparse
    parser = argparse.ArgumentParser(description="Stream from microphone to DeepSpeech using VAD")

    parser.add_argument('-v', '--vad_aggressiveness', type=int, default=3,
                        help="Set aggressiveness of VAD: an integer between 0 and 3, 0 being the least aggressive about filtering out non-speech, 3 the most aggressive. Default: 3")
    parser.add_argument('--nospinner', action='store_true',
                        help="Disable spinner")
    parser.add_argument('-w', '--savewav',
                        help="Save .wav files of utterences to given directory")
    parser.add_argument('-f', '--file',
                        help="Read from .wav file instead of microphone")

    parser.add_argument('-m', '--model', required=True,
                        help="Path to the model (protocol buffer binary file, or entire directory containing all standard-named files for model)")
    parser.add_argument('-s', '--scorer',
                        help="Path to the external scorer file.")
    parser.add_argument('-d', '--device', type=int, default=None,
                        help="Device input index (Int) as listed by pyaudio.PyAudio.get_device_info_by_index(). If not provided, falls back to PyAudio.get_default_device().")
    parser.add_argument('-r', '--rate', type=int, default=DEFAULT_SAMPLE_RATE,
                        help=f"Input device sample rate. Default: {DEFAULT_SAMPLE_RATE}. Your device may require 44100.")

    ARGS = parser.parse_args()
    if ARGS.savewav: os.makedirs(ARGS.savewav, exist_ok=True)
    main(ARGS)