|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- ehartford/dolphin |
|
- LinhDuong/chatdoctor-200k |
|
- sahil2801/code_instructions_120k |
|
- medalpaca/medical_meadow_mediqa |
|
- kaiokendev/SuperCOT-dataset |
|
- tiiuae/falcon-refinedweb |
|
- bigcode/starcoderdata |
|
- togethercomputer/RedPajama-Data-1T |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
tags: |
|
- medical |
|
- code |
|
--- |
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
This model is an instruction-tuned Open LLaMa model with 7B parameters, with specialities in medical QA and code instruction. |
|
|
|
## Model Details |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
- **Model type:** LlamaForCausalLM |
|
- **Language(s) (NLP):** English |
|
- **License:** Apache 2.0 |
|
- **Finetuned from model (QLoRA):** [openlm-research/open_llama_7b_v2](https://huggingface.co./openlm-research/open_llama_7b_v2) |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```py |
|
import torch |
|
from transformers import LlamaTokenizer, LlamaForCausalLM |
|
|
|
model_path = 'yhyhy3/open_llama_7b_v2_med_dolphin_qlora_merged' |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path) |
|
model = LlamaForCausalLM.from_pretrained( |
|
model_path, torch_dtype=torch.float16, device_map='auto', |
|
) |
|
|
|
prompt = '''### Instruction: Answer the following question. |
|
|
|
### Input: What is the capital of New Jersey? |
|
|
|
### Response:''' |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids |
|
|
|
generation_output = model.generate( |
|
input_ids=input_ids, max_new_tokens=32 |
|
) |
|
print(tokenizer.decode(generation_output[0])) |
|
``` |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
Converted the following datasets to alpaca:instruction format. |
|
|
|
1. [ehartford/dolphin](https://huggingface.co./datasets/ehartford/dolphin) |
|
- ORCA style dataset generously created by [Eric Hartford](https://huggingface.co./ehartford) |
|
- Only used the 1 million GPT4 generated instructions file [flan1m-alpaca-uncensored.jsonl](https://huggingface.co./datasets/ehartford/dolphin/blob/main/flan1m-alpaca-uncensored.jsonl). |
|
2. [LinhDuong/chatdoctor-200k](https://huggingface.co./datasets/LinhDuong/chatdoctor-200k) |
|
- Refined dataset sourced from icliniq medical QA forum |
|
3. [sahil2801/code_instructions_120k](https://huggingface.co./datasets/sahil2801/code_instructions_120k) |
|
- Code instruction dataset generously created by Sahil Chaudhary from ThreeSixty AI |
|
4. [medalpaca/medical_meadow_mediqa](https://huggingface.co./datasets/medalpaca/medical_meadow_mediqa) |
|
- MEDIQA is a dataset of manually generated, question-driven summaries of multi and single document answers to consumer health questions from medalpaca group. |
|
5. [kaiokendev/SuperCOT-dataset](https://huggingface.co./datasets/kaiokendev/SuperCOT-dataset) |
|
- Code instruction dataset generously created by Kaio Ken |
|
|
|
### Training Procedure |
|
|
|
Trained using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) QLoRa on [RunPod](https://www.runpod.io/console/gpu-cloud) 8x A6000 on Community Cloud for 3 epochs (~14 hours - ~$70). |
|
|
|
<details> |
|
<summary>axolotl training config:</summary> |
|
|
|
```yaml |
|
base_model: openlm-research/open_llama_7b_v2 |
|
base_model_config: openlm-research/open_llama_7b_v2 |
|
model_type: LlamaForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
push_dataset_to_hub: |
|
hub_model_id: |
|
hf_use_auth_token: |
|
|
|
datasets: |
|
- path: json |
|
type: alpaca |
|
data_files: /disk/flan1m-alpaca-uncensored.jsonl |
|
shards: 8 |
|
- path: sahil2801/code_instructions_120k |
|
type: alpaca |
|
- path: LinhDuong/chatdoctor-200k |
|
type: alpaca |
|
shards: 2 |
|
- path: kaiokendev/SuperCOT-dataset |
|
type: alpaca |
|
- path: medalpaca/medical_meadow_mediqa |
|
type: alpaca |
|
|
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.01 |
|
adapter: qlora |
|
lora_model_dir: |
|
sequence_len: 2048 |
|
max_packed_sequence_len: 2048 |
|
lora_r: 8 |
|
lora_alpha: 32 |
|
lora_dropout: 0.05 |
|
lora_target_modules: |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
wandb_mode: true |
|
wandb_project: |
|
wandb_watch: |
|
wandb_run_id: |
|
wandb_log_model: 'openllama_checkpoint' |
|
output_dir: /disk/open_llama_7b_v2_dolphin_qlora |
|
gradient_accumulation_steps: 2 |
|
micro_batch_size: 16 |
|
num_epochs: 3 |
|
optimizer: paged_adamw_32bit |
|
torchdistx_path: |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: false |
|
tf32: true |
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: true |
|
flash_attention: |
|
gptq_groupsize: |
|
gptq_model_v1: |
|
warmup_steps: 1000 |
|
eval_steps: 5000 |
|
save_steps: |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0000001 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
``` |
|
</details> |