File size: 4,732 Bytes
c9b7436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
license: apache-2.0
datasets:
- ehartford/dolphin
- LinhDuong/chatdoctor-200k
- sahil2801/code_instructions_120k
- medalpaca/medical_meadow_mediqa
- kaiokendev/SuperCOT-dataset
- tiiuae/falcon-refinedweb
- bigcode/starcoderdata
- togethercomputer/RedPajama-Data-1T
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- medical
- code
---
# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

This model is an instruction-tuned Open LLaMa model with 7B parameters, with specialities in medical QA and code instruction.

## Model Details

<!-- Provide a longer summary of what this model is. -->

- **Model type:** LlamaForCausalLM
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Finetuned from model (QLoRA):** [openlm-research/open_llama_7b_v2](https://huggingface.co./openlm-research/open_llama_7b_v2)

## How to Get Started with the Model

Use the code below to get started with the model.

```py
import torch
from transformers import LlamaTokenizer, LlamaForCausalLM

model_path = 'yhyhy3/open_llama_7b_v2_med_dolphin_qlora_merged'

tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(
    model_path, torch_dtype=torch.float16, device_map='auto',
)

prompt = '''### Instruction: Answer the following question.

### Input: What is the capital of New Jersey?

### Response:'''
input_ids = tokenizer(prompt, return_tensors="pt").input_ids

generation_output = model.generate(
    input_ids=input_ids, max_new_tokens=32
)
print(tokenizer.decode(generation_output[0]))
```

## Training Details

### Training Data

Converted the following datasets to alpaca:instruction format.

1. [ehartford/dolphin](https://huggingface.co./datasets/ehartford/dolphin)
  - ORCA style dataset generously created by [Eric Hartford](https://huggingface.co./ehartford)
  - Only used the 1 million GPT4 generated instructions file [flan1m-alpaca-uncensored.jsonl](https://huggingface.co./datasets/ehartford/dolphin/blob/main/flan1m-alpaca-uncensored.jsonl).
2. [LinhDuong/chatdoctor-200k](https://huggingface.co./datasets/LinhDuong/chatdoctor-200k)
  - Refined dataset sourced from icliniq medical QA forum
3. [sahil2801/code_instructions_120k](https://huggingface.co./datasets/sahil2801/code_instructions_120k)
  - Code instruction dataset generously created by Sahil Chaudhary from ThreeSixty AI
4. [medalpaca/medical_meadow_mediqa](https://huggingface.co./datasets/medalpaca/medical_meadow_mediqa)
  - MEDIQA is a dataset of manually generated, question-driven summaries of multi and single document answers to consumer health questions from medalpaca group.
5. [kaiokendev/SuperCOT-dataset](https://huggingface.co./datasets/kaiokendev/SuperCOT-dataset)
  - Code instruction dataset generously created by Kaio Ken

### Training Procedure 

Trained using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) QLoRa on [RunPod](https://www.runpod.io/console/gpu-cloud) 8x A6000 on Community Cloud for 3 epochs (~14 hours - ~$70).

<details>
  <summary>axolotl training config:</summary>
  
```yaml
base_model: openlm-research/open_llama_7b_v2
base_model_config: openlm-research/open_llama_7b_v2
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false

push_dataset_to_hub:
hub_model_id:
hf_use_auth_token:

datasets:
  - path: json
    type: alpaca
    data_files: /disk/flan1m-alpaca-uncensored.jsonl
    shards: 8
  - path: sahil2801/code_instructions_120k
    type: alpaca
  - path: LinhDuong/chatdoctor-200k
    type: alpaca
    shards: 2
  - path: kaiokendev/SuperCOT-dataset
    type: alpaca
  - path: medalpaca/medical_meadow_mediqa
    type: alpaca

dataset_prepared_path: last_run_prepared
val_set_size: 0.01
adapter: qlora
lora_model_dir:
sequence_len: 2048
max_packed_sequence_len: 2048
lora_r: 8
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:

wandb_mode: true
wandb_project:
wandb_watch:
wandb_run_id:
wandb_log_model: 'openllama_checkpoint'
output_dir: /disk/open_llama_7b_v2_dolphin_qlora
gradient_accumulation_steps: 2
micro_batch_size: 16
num_epochs: 3
optimizer: paged_adamw_32bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: true
flash_attention:
gptq_groupsize:
gptq_model_v1:
warmup_steps: 1000
eval_steps: 5000
save_steps:
debug:
deepspeed:
weight_decay: 0.0000001
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
```
</details>