File size: 4,732 Bytes
c9b7436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
license: apache-2.0
datasets:
- ehartford/dolphin
- LinhDuong/chatdoctor-200k
- sahil2801/code_instructions_120k
- medalpaca/medical_meadow_mediqa
- kaiokendev/SuperCOT-dataset
- tiiuae/falcon-refinedweb
- bigcode/starcoderdata
- togethercomputer/RedPajama-Data-1T
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- medical
- code
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This model is an instruction-tuned Open LLaMa model with 7B parameters, with specialities in medical QA and code instruction.
## Model Details
<!-- Provide a longer summary of what this model is. -->
- **Model type:** LlamaForCausalLM
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Finetuned from model (QLoRA):** [openlm-research/open_llama_7b_v2](https://huggingface.co./openlm-research/open_llama_7b_v2)
## How to Get Started with the Model
Use the code below to get started with the model.
```py
import torch
from transformers import LlamaTokenizer, LlamaForCausalLM
model_path = 'yhyhy3/open_llama_7b_v2_med_dolphin_qlora_merged'
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float16, device_map='auto',
)
prompt = '''### Instruction: Answer the following question.
### Input: What is the capital of New Jersey?
### Response:'''
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=32
)
print(tokenizer.decode(generation_output[0]))
```
## Training Details
### Training Data
Converted the following datasets to alpaca:instruction format.
1. [ehartford/dolphin](https://huggingface.co./datasets/ehartford/dolphin)
- ORCA style dataset generously created by [Eric Hartford](https://huggingface.co./ehartford)
- Only used the 1 million GPT4 generated instructions file [flan1m-alpaca-uncensored.jsonl](https://huggingface.co./datasets/ehartford/dolphin/blob/main/flan1m-alpaca-uncensored.jsonl).
2. [LinhDuong/chatdoctor-200k](https://huggingface.co./datasets/LinhDuong/chatdoctor-200k)
- Refined dataset sourced from icliniq medical QA forum
3. [sahil2801/code_instructions_120k](https://huggingface.co./datasets/sahil2801/code_instructions_120k)
- Code instruction dataset generously created by Sahil Chaudhary from ThreeSixty AI
4. [medalpaca/medical_meadow_mediqa](https://huggingface.co./datasets/medalpaca/medical_meadow_mediqa)
- MEDIQA is a dataset of manually generated, question-driven summaries of multi and single document answers to consumer health questions from medalpaca group.
5. [kaiokendev/SuperCOT-dataset](https://huggingface.co./datasets/kaiokendev/SuperCOT-dataset)
- Code instruction dataset generously created by Kaio Ken
### Training Procedure
Trained using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) QLoRa on [RunPod](https://www.runpod.io/console/gpu-cloud) 8x A6000 on Community Cloud for 3 epochs (~14 hours - ~$70).
<details>
<summary>axolotl training config:</summary>
```yaml
base_model: openlm-research/open_llama_7b_v2
base_model_config: openlm-research/open_llama_7b_v2
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
push_dataset_to_hub:
hub_model_id:
hf_use_auth_token:
datasets:
- path: json
type: alpaca
data_files: /disk/flan1m-alpaca-uncensored.jsonl
shards: 8
- path: sahil2801/code_instructions_120k
type: alpaca
- path: LinhDuong/chatdoctor-200k
type: alpaca
shards: 2
- path: kaiokendev/SuperCOT-dataset
type: alpaca
- path: medalpaca/medical_meadow_mediqa
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
adapter: qlora
lora_model_dir:
sequence_len: 2048
max_packed_sequence_len: 2048
lora_r: 8
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_mode: true
wandb_project:
wandb_watch:
wandb_run_id:
wandb_log_model: 'openllama_checkpoint'
output_dir: /disk/open_llama_7b_v2_dolphin_qlora
gradient_accumulation_steps: 2
micro_batch_size: 16
num_epochs: 3
optimizer: paged_adamw_32bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: true
flash_attention:
gptq_groupsize:
gptq_model_v1:
warmup_steps: 1000
eval_steps: 5000
save_steps:
debug:
deepspeed:
weight_decay: 0.0000001
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details> |