metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:200
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/multi-qa-distilbert-dot-v1
widget:
- source_sentence: >-
Qual é o horário de funcionamento do setor DCFN (Divisão de Contabilidade
e Finanças)?
sentences:
- >-
Demais informações acesse o site:
https://www.gestaoadministrativa.saomateus.ufes.br/apresentacao
- >-
Por favor, contate o suporte técnico detalhando o problema do
equipamento para diagnóstico e reparo.
- Envie um e-mail para [email protected].
- source_sentence: Como solicitar pagamento de ajuda de custos à estudante?
sentences:
- >-
Para instalar uma impressora, solicite o serviço ao suporte de TI em
https://atendimento.ufes.br, que poderá auxiliar com a instalação e
configuração do equipamento.
- >-
Faça login em
https://administrativo.ufes.br/sistema/catalogo-produtos/catalogo.
- >-
Cabe à Secretaria Única de Graduação – SUGRAD/CEUNES instruir
devidamente o processo digital, encaminhar para análise e aprovação da
Direção do Ceunes, que se estiver de acordo, remeterá o mesmo à DCFN
(Divisão de Contabilidade e Finanças) para efetivação do pagamento.
Informações sobre pagamento de ajuda de custos à estudantes entrar em
contato com a DCFN (Divisão de Contabilidade e Finanças).
E-mail institucional: [email protected].
Telefones: 3312-1517 e 3312-1518.
Demais informações acesse o site:
https://www.gestaoadministrativa.saomateus.ufes.br/apresentacao
- source_sentence: Como solicitar atendimento social online?
sentences:
- >-
Acesse
https://administrativo.ufes.br/sistema/solicitacao/visualizar-solicitacoes-universidade.
- >-
Para dificuldades de acesso à rede Eduroam, verifique as configurações
de rede e as credenciais fornecidas. Caso persista, contate o suporte de
TI da UFES para assistência.
- Envie um e-mail para [email protected] para agendar o atendimento.
- source_sentence: Problemas - Pontos de Internet
sentences:
- >-
Se há pontos de internet que não estão funcionando, por favor, entre em
contato com o suporte de TI para solicitar manutenção ou inspeção dos
cabos e conectores.
- Siga as orientações em https://senha.ufes.br/site/recuperaCredenciais.
- >-
Procurar a aplicação Executar no menu do Windows ou pressionar as teclas
simultaneamente Windows + R e digitar \\172.20.110.8 .
- source_sentence: Qual é o procedimento para solicitação de compras?
sentences:
- >-
Envie um ofício via documento avulso para DRMN. Mais informações em
https://drm.saomateus.ufes.br/agentes-patrimoniais.
- >-
Para solicitar uma compra, é necessário preencher o formulário de
solicitação e enviá-lo ao setor de compras.
- >-
Atualmente somente são realizadas consultas relativas à avaliação dos
exames periódicos. Envie um e-mail para [email protected]
ou ligue para equipe de enfermagem no ramal (27) 3312-1742. O horário de
atendimento é de segunda a sexta-feira, das 08h às 11h30 e das 12h30 às
17h.
datasets:
- matunderstars/ufes-qa-data
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on sentence-transformers/multi-qa-distilbert-dot-v1
This is a sentence-transformers model finetuned from sentence-transformers/multi-qa-distilbert-dot-v1 on the train and test datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/multi-qa-distilbert-dot-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Dot Product
- Training Datasets:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("matunderstars/ufes-qa-embedding-finetuned-v3")
# Run inference
sentences = [
'Qual é o procedimento para solicitação de compras?',
'Para solicitar uma compra, é necessário preencher o formulário de solicitação e enviá-lo ao setor de compras.',
'Atualmente somente são realizadas consultas relativas à avaliação dos exames periódicos. Envie um e-mail para [email protected] ou ligue para equipe de enfermagem no ramal (27) 3312-1742. O horário de atendimento é de segunda a sexta-feira, das 08h às 11h30 e das 12h30 às 17h.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Datasets
train
- Dataset: train at 02bfedf
- Size: 100 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 100 samples:
question answer type string string details - min: 7 tokens
- mean: 18.01 tokens
- max: 45 tokens
- min: 14 tokens
- mean: 56.46 tokens
- max: 390 tokens
- Samples:
question answer Onde encontrar informações sobre diárias?
Procedimentos, formulários, dúvidas e orientações estão disponíveis em:
https://gestaoadministrativa.saomateus.ufes.br/procedimentos-necessarios-para-solicitacao-de-diarias-e-passagens-aereas-no-ambito-do-ceunesufesOnde encontrar informações sobre as salas de aula e a configuração de equipamentos?
Consulte o manual em https://dtin.saomateus.ufes.br/tecnologias-educacionais.
Como cadastrar/alterar dados no Sistema Integrado de Ensino (SIE), Protocolo, Portal Administrativo, Acadêmico e Reservas?
Acesse https://dtin.saomateus.ufes.br/cadastros-e-habilitacao-aos-sistemas-institucionais e preencha o formulário.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
test
- Dataset: test at 02bfedf
- Size: 100 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 100 samples:
question answer type string string details - min: 8 tokens
- mean: 18.3 tokens
- max: 36 tokens
- min: 15 tokens
- mean: 52.4 tokens
- max: 219 tokens
- Samples:
question answer Liberação de Acesso a sistemas institucionais
Para liberar acesso a sistemas institucionais, entre em contato com o setor de TI da UFES, especificando o recurso ou sistema para o qual precisa de acesso.
Como criar uma nova ata de registro de preços?
Observe o calendário de compras CEUNES. Acesse https://crm.saomateus.ufes.br.
Sistema dos Correios (SIGEP) não abre
Verifique se o sistema SIGEP está atualizado. Consulte o suporte de TI para assistência.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 180warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 180max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
71.4286 | 500 | 0.1063 |
142.8571 | 1000 | 0.0001 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}