matunderstars commited on
Commit
1a80e84
·
verified ·
1 Parent(s): f36bc36

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:200
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/multi-qa-distilbert-dot-v1
10
+ widget:
11
+ - source_sentence: Qual é o horário de funcionamento do setor DCFN (Divisão de Contabilidade
12
+ e Finanças)?
13
+ sentences:
14
+ - 'Demais informações acesse o site: https://www.gestaoadministrativa.saomateus.ufes.br/apresentacao'
15
+ - Por favor, contate o suporte técnico detalhando o problema do equipamento para
16
+ diagnóstico e reparo.
17
+ - Envie um e-mail para [email protected].
18
+ - source_sentence: Como solicitar pagamento de ajuda de custos à estudante?
19
+ sentences:
20
+ - Para instalar uma impressora, solicite o serviço ao suporte de TI em https://atendimento.ufes.br,
21
+ que poderá auxiliar com a instalação e configuração do equipamento.
22
+ - Faça login em https://administrativo.ufes.br/sistema/catalogo-produtos/catalogo.
23
+ - 'Cabe à Secretaria Única de Graduação – SUGRAD/CEUNES instruir devidamente o processo
24
+ digital, encaminhar para análise e aprovação da Direção do Ceunes, que se estiver
25
+ de acordo, remeterá o mesmo à DCFN (Divisão de Contabilidade e Finanças) para
26
+ efetivação do pagamento.
27
+
28
+ Informações sobre pagamento de ajuda de custos à estudantes entrar em contato
29
+ com a DCFN (Divisão de Contabilidade e Finanças).
30
+
31
+
32
+ E-mail institucional: [email protected].
33
+
34
+
35
+ Telefones: 3312-1517 e 3312-1518.
36
+
37
+
38
+ Demais informações acesse o site: https://www.gestaoadministrativa.saomateus.ufes.br/apresentacao'
39
+ - source_sentence: Como solicitar atendimento social online?
40
+ sentences:
41
+ - Acesse https://administrativo.ufes.br/sistema/solicitacao/visualizar-solicitacoes-universidade.
42
+ - Para dificuldades de acesso à rede Eduroam, verifique as configurações de rede
43
+ e as credenciais fornecidas. Caso persista, contate o suporte de TI da UFES para
44
+ assistência.
45
+ - Envie um e-mail para [email protected] para agendar o atendimento.
46
+ - source_sentence: Problemas - Pontos de Internet
47
+ sentences:
48
+ - Se há pontos de internet que não estão funcionando, por favor, entre em contato
49
+ com o suporte de TI para solicitar manutenção ou inspeção dos cabos e conectores.
50
+ - Siga as orientações em https://senha.ufes.br/site/recuperaCredenciais.
51
+ - Procurar a aplicação Executar no menu do Windows ou pressionar as teclas simultaneamente
52
+ Windows + R e digitar \\172.20.110.8 .
53
+ - source_sentence: Qual é o procedimento para solicitação de compras?
54
+ sentences:
55
+ - Envie um ofício via documento avulso para DRMN. Mais informações em https://drm.saomateus.ufes.br/agentes-patrimoniais.
56
+ - Para solicitar uma compra, é necessário preencher o formulário de solicitação
57
+ e enviá-lo ao setor de compras.
58
+ - Atualmente somente são realizadas consultas relativas à avaliação dos exames periódicos.
59
+ Envie um e-mail para [email protected] ou ligue para equipe de enfermagem
60
+ no ramal (27) 3312-1742. O horário de atendimento é de segunda a sexta-feira,
61
+ das 08h às 11h30 e das 12h30 às 17h.
62
+ datasets:
63
+ - matunderstars/ufes-qa-data
64
+ pipeline_tag: sentence-similarity
65
+ library_name: sentence-transformers
66
+ ---
67
+
68
+ # SentenceTransformer based on sentence-transformers/multi-qa-distilbert-dot-v1
69
+
70
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-distilbert-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-distilbert-dot-v1) on the [train](https://huggingface.co/datasets/matunderstars/ufes-qa-data) and [test](https://huggingface.co/datasets/matunderstars/ufes-qa-data) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
71
+
72
+ ## Model Details
73
+
74
+ ### Model Description
75
+ - **Model Type:** Sentence Transformer
76
+ - **Base model:** [sentence-transformers/multi-qa-distilbert-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-distilbert-dot-v1) <!-- at revision af530b176a2172b3aeeb9abc7b9d4e808f2a9477 -->
77
+ - **Maximum Sequence Length:** 512 tokens
78
+ - **Output Dimensionality:** 768 dimensions
79
+ - **Similarity Function:** Dot Product
80
+ - **Training Datasets:**
81
+ - [train](https://huggingface.co/datasets/matunderstars/ufes-qa-data)
82
+ - [test](https://huggingface.co/datasets/matunderstars/ufes-qa-data)
83
+ <!-- - **Language:** Unknown -->
84
+ <!-- - **License:** Unknown -->
85
+
86
+ ### Model Sources
87
+
88
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
89
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
90
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
91
+
92
+ ### Full Model Architecture
93
+
94
+ ```
95
+ SentenceTransformer(
96
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
97
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
98
+ )
99
+ ```
100
+
101
+ ## Usage
102
+
103
+ ### Direct Usage (Sentence Transformers)
104
+
105
+ First install the Sentence Transformers library:
106
+
107
+ ```bash
108
+ pip install -U sentence-transformers
109
+ ```
110
+
111
+ Then you can load this model and run inference.
112
+ ```python
113
+ from sentence_transformers import SentenceTransformer
114
+
115
+ # Download from the 🤗 Hub
116
+ model = SentenceTransformer("matunderstars/ufes-qa-embedding-finetuned-v3")
117
+ # Run inference
118
+ sentences = [
119
+ 'Qual é o procedimento para solicitação de compras?',
120
+ 'Para solicitar uma compra, é necessário preencher o formulário de solicitação e enviá-lo ao setor de compras.',
121
+ 'Atualmente somente são realizadas consultas relativas à avaliação dos exames periódicos. Envie um e-mail para [email protected] ou ligue para equipe de enfermagem no ramal (27) 3312-1742. O horário de atendimento é de segunda a sexta-feira, das 08h às 11h30 e das 12h30 às 17h.',
122
+ ]
123
+ embeddings = model.encode(sentences)
124
+ print(embeddings.shape)
125
+ # [3, 768]
126
+
127
+ # Get the similarity scores for the embeddings
128
+ similarities = model.similarity(embeddings, embeddings)
129
+ print(similarities.shape)
130
+ # [3, 3]
131
+ ```
132
+
133
+ <!--
134
+ ### Direct Usage (Transformers)
135
+
136
+ <details><summary>Click to see the direct usage in Transformers</summary>
137
+
138
+ </details>
139
+ -->
140
+
141
+ <!--
142
+ ### Downstream Usage (Sentence Transformers)
143
+
144
+ You can finetune this model on your own dataset.
145
+
146
+ <details><summary>Click to expand</summary>
147
+
148
+ </details>
149
+ -->
150
+
151
+ <!--
152
+ ### Out-of-Scope Use
153
+
154
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
155
+ -->
156
+
157
+ <!--
158
+ ## Bias, Risks and Limitations
159
+
160
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
161
+ -->
162
+
163
+ <!--
164
+ ### Recommendations
165
+
166
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
167
+ -->
168
+
169
+ ## Training Details
170
+
171
+ ### Training Datasets
172
+
173
+ #### train
174
+
175
+ * Dataset: [train](https://huggingface.co/datasets/matunderstars/ufes-qa-data) at [02bfedf](https://huggingface.co/datasets/matunderstars/ufes-qa-data/tree/02bfedf96441339120864b5df6b748c47d391b2d)
176
+ * Size: 100 training samples
177
+ * Columns: <code>question</code> and <code>answer</code>
178
+ * Approximate statistics based on the first 100 samples:
179
+ | | question | answer |
180
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
181
+ | type | string | string |
182
+ | details | <ul><li>min: 7 tokens</li><li>mean: 18.01 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 56.46 tokens</li><li>max: 390 tokens</li></ul> |
183
+ * Samples:
184
+ | question | answer |
185
+ |:----------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
186
+ | <code>Onde encontrar informações sobre diárias?</code> | <code>Procedimentos, formulários, dúvidas e orientações estão disponíveis em:<br>https://gestaoadministrativa.saomateus.ufes.br/procedimentos-necessarios-para-solicitacao-de-diarias-e-passagens-aereas-no-ambito-do-ceunesufes</code> |
187
+ | <code>Onde encontrar informações sobre as salas de aula e a configuração de equipamentos?</code> | <code>Consulte o manual em https://dtin.saomateus.ufes.br/tecnologias-educacionais.</code> |
188
+ | <code>Como cadastrar/alterar dados no Sistema Integrado de Ensino (SIE), Protocolo, Portal Administrativo, Acadêmico e Reservas?</code> | <code>Acesse https://dtin.saomateus.ufes.br/cadastros-e-habilitacao-aos-sistemas-institucionais e preencha o formulário.</code> |
189
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
190
+ ```json
191
+ {
192
+ "scale": 20.0,
193
+ "similarity_fct": "cos_sim"
194
+ }
195
+ ```
196
+
197
+ #### test
198
+
199
+ * Dataset: [test](https://huggingface.co/datasets/matunderstars/ufes-qa-data) at [02bfedf](https://huggingface.co/datasets/matunderstars/ufes-qa-data/tree/02bfedf96441339120864b5df6b748c47d391b2d)
200
+ * Size: 100 training samples
201
+ * Columns: <code>question</code> and <code>answer</code>
202
+ * Approximate statistics based on the first 100 samples:
203
+ | | question | answer |
204
+ |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
205
+ | type | string | string |
206
+ | details | <ul><li>min: 8 tokens</li><li>mean: 18.3 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 52.4 tokens</li><li>max: 219 tokens</li></ul> |
207
+ * Samples:
208
+ | question | answer |
209
+ |:------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
210
+ | <code>Liberação de Acesso a sistemas institucionais</code> | <code>Para liberar acesso a sistemas institucionais, entre em contato com o setor de TI da UFES, especificando o recurso ou sistema para o qual precisa de acesso.</code> |
211
+ | <code>Como criar uma nova ata de registro de preços?</code> | <code>Observe o calendário de compras CEUNES. Acesse https://crm.saomateus.ufes.br.</code> |
212
+ | <code>Sistema dos Correios (SIGEP) não abre</code> | <code>Verifique se o sistema SIGEP está atualizado. Consulte o suporte de TI para assistência.</code> |
213
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
214
+ ```json
215
+ {
216
+ "scale": 20.0,
217
+ "similarity_fct": "cos_sim"
218
+ }
219
+ ```
220
+
221
+ ### Training Hyperparameters
222
+ #### Non-Default Hyperparameters
223
+
224
+ - `per_device_train_batch_size`: 16
225
+ - `per_device_eval_batch_size`: 16
226
+ - `num_train_epochs`: 180
227
+ - `warmup_ratio`: 0.1
228
+ - `fp16`: True
229
+ - `batch_sampler`: no_duplicates
230
+
231
+ #### All Hyperparameters
232
+ <details><summary>Click to expand</summary>
233
+
234
+ - `overwrite_output_dir`: False
235
+ - `do_predict`: False
236
+ - `eval_strategy`: no
237
+ - `prediction_loss_only`: True
238
+ - `per_device_train_batch_size`: 16
239
+ - `per_device_eval_batch_size`: 16
240
+ - `per_gpu_train_batch_size`: None
241
+ - `per_gpu_eval_batch_size`: None
242
+ - `gradient_accumulation_steps`: 1
243
+ - `eval_accumulation_steps`: None
244
+ - `torch_empty_cache_steps`: None
245
+ - `learning_rate`: 5e-05
246
+ - `weight_decay`: 0.0
247
+ - `adam_beta1`: 0.9
248
+ - `adam_beta2`: 0.999
249
+ - `adam_epsilon`: 1e-08
250
+ - `max_grad_norm`: 1.0
251
+ - `num_train_epochs`: 180
252
+ - `max_steps`: -1
253
+ - `lr_scheduler_type`: linear
254
+ - `lr_scheduler_kwargs`: {}
255
+ - `warmup_ratio`: 0.1
256
+ - `warmup_steps`: 0
257
+ - `log_level`: passive
258
+ - `log_level_replica`: warning
259
+ - `log_on_each_node`: True
260
+ - `logging_nan_inf_filter`: True
261
+ - `save_safetensors`: True
262
+ - `save_on_each_node`: False
263
+ - `save_only_model`: False
264
+ - `restore_callback_states_from_checkpoint`: False
265
+ - `no_cuda`: False
266
+ - `use_cpu`: False
267
+ - `use_mps_device`: False
268
+ - `seed`: 42
269
+ - `data_seed`: None
270
+ - `jit_mode_eval`: False
271
+ - `use_ipex`: False
272
+ - `bf16`: False
273
+ - `fp16`: True
274
+ - `fp16_opt_level`: O1
275
+ - `half_precision_backend`: auto
276
+ - `bf16_full_eval`: False
277
+ - `fp16_full_eval`: False
278
+ - `tf32`: None
279
+ - `local_rank`: 0
280
+ - `ddp_backend`: None
281
+ - `tpu_num_cores`: None
282
+ - `tpu_metrics_debug`: False
283
+ - `debug`: []
284
+ - `dataloader_drop_last`: False
285
+ - `dataloader_num_workers`: 0
286
+ - `dataloader_prefetch_factor`: None
287
+ - `past_index`: -1
288
+ - `disable_tqdm`: False
289
+ - `remove_unused_columns`: True
290
+ - `label_names`: None
291
+ - `load_best_model_at_end`: False
292
+ - `ignore_data_skip`: False
293
+ - `fsdp`: []
294
+ - `fsdp_min_num_params`: 0
295
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
296
+ - `fsdp_transformer_layer_cls_to_wrap`: None
297
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
298
+ - `deepspeed`: None
299
+ - `label_smoothing_factor`: 0.0
300
+ - `optim`: adamw_torch
301
+ - `optim_args`: None
302
+ - `adafactor`: False
303
+ - `group_by_length`: False
304
+ - `length_column_name`: length
305
+ - `ddp_find_unused_parameters`: None
306
+ - `ddp_bucket_cap_mb`: None
307
+ - `ddp_broadcast_buffers`: False
308
+ - `dataloader_pin_memory`: True
309
+ - `dataloader_persistent_workers`: False
310
+ - `skip_memory_metrics`: True
311
+ - `use_legacy_prediction_loop`: False
312
+ - `push_to_hub`: False
313
+ - `resume_from_checkpoint`: None
314
+ - `hub_model_id`: None
315
+ - `hub_strategy`: every_save
316
+ - `hub_private_repo`: False
317
+ - `hub_always_push`: False
318
+ - `gradient_checkpointing`: False
319
+ - `gradient_checkpointing_kwargs`: None
320
+ - `include_inputs_for_metrics`: False
321
+ - `include_for_metrics`: []
322
+ - `eval_do_concat_batches`: True
323
+ - `fp16_backend`: auto
324
+ - `push_to_hub_model_id`: None
325
+ - `push_to_hub_organization`: None
326
+ - `mp_parameters`:
327
+ - `auto_find_batch_size`: False
328
+ - `full_determinism`: False
329
+ - `torchdynamo`: None
330
+ - `ray_scope`: last
331
+ - `ddp_timeout`: 1800
332
+ - `torch_compile`: False
333
+ - `torch_compile_backend`: None
334
+ - `torch_compile_mode`: None
335
+ - `dispatch_batches`: None
336
+ - `split_batches`: None
337
+ - `include_tokens_per_second`: False
338
+ - `include_num_input_tokens_seen`: False
339
+ - `neftune_noise_alpha`: None
340
+ - `optim_target_modules`: None
341
+ - `batch_eval_metrics`: False
342
+ - `eval_on_start`: False
343
+ - `use_liger_kernel`: False
344
+ - `eval_use_gather_object`: False
345
+ - `average_tokens_across_devices`: False
346
+ - `prompts`: None
347
+ - `batch_sampler`: no_duplicates
348
+ - `multi_dataset_batch_sampler`: proportional
349
+
350
+ </details>
351
+
352
+ ### Training Logs
353
+ | Epoch | Step | Training Loss |
354
+ |:--------:|:----:|:-------------:|
355
+ | 71.4286 | 500 | 0.1063 |
356
+ | 142.8571 | 1000 | 0.0001 |
357
+
358
+
359
+ ### Framework Versions
360
+ - Python: 3.10.12
361
+ - Sentence Transformers: 3.3.1
362
+ - Transformers: 4.46.3
363
+ - PyTorch: 2.5.1+cu121
364
+ - Accelerate: 1.1.1
365
+ - Datasets: 3.2.0
366
+ - Tokenizers: 0.20.3
367
+
368
+ ## Citation
369
+
370
+ ### BibTeX
371
+
372
+ #### Sentence Transformers
373
+ ```bibtex
374
+ @inproceedings{reimers-2019-sentence-bert,
375
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
376
+ author = "Reimers, Nils and Gurevych, Iryna",
377
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
378
+ month = "11",
379
+ year = "2019",
380
+ publisher = "Association for Computational Linguistics",
381
+ url = "https://arxiv.org/abs/1908.10084",
382
+ }
383
+ ```
384
+
385
+ #### MultipleNegativesRankingLoss
386
+ ```bibtex
387
+ @misc{henderson2017efficient,
388
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
389
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
390
+ year={2017},
391
+ eprint={1705.00652},
392
+ archivePrefix={arXiv},
393
+ primaryClass={cs.CL}
394
+ }
395
+ ```
396
+
397
+ <!--
398
+ ## Glossary
399
+
400
+ *Clearly define terms in order to be accessible across audiences.*
401
+ -->
402
+
403
+ <!--
404
+ ## Model Card Authors
405
+
406
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
407
+ -->
408
+
409
+ <!--
410
+ ## Model Card Contact
411
+
412
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
413
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/multi-qa-distilbert-dot-v1",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.46.3",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "dot"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4d99c08f7680c3404744305979d6bc73b192049c361e1734a85901fa05890e5
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 250,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "DistilBertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff