|
--- |
|
language: |
|
- pt |
|
model-index: |
|
- name: sabia-7b |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: ENEM Challenge (No Images) |
|
type: eduagarcia/enem_challenge |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 55.07 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BLUEX (No Images) |
|
type: eduagarcia-temp/BLUEX_without_images |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 47.71 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: OAB Exams |
|
type: eduagarcia/oab_exams |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 41.41 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Assin2 RTE |
|
type: assin2 |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: f1_macro |
|
value: 46.68 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Assin2 STS |
|
type: eduagarcia/portuguese_benchmark |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: pearson |
|
value: 1.89 |
|
name: pearson |
|
source: |
|
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: FaQuAD NLI |
|
type: ruanchaves/faquad-nli |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: f1_macro |
|
value: 58.34 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HateBR Binary |
|
type: ruanchaves/hatebr |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 61.93 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: PT Hate Speech Binary |
|
type: hate_speech_portuguese |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 64.13 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: tweetSentBR |
|
type: eduagarcia-temp/tweetsentbr |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 46.64 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b |
|
name: Open Portuguese LLM Leaderboard |
|
--- |
|
|
|
Sabiá-7B is Portuguese language model developed by [Maritaca AI](https://www.maritaca.ai/). |
|
|
|
**Input:** The model accepts only text input. |
|
|
|
**Output:** The Model generates text only. |
|
|
|
**Model Architecture:** Sabiá-7B is an auto-regressive language model that uses the same architecture of LLaMA-1-7B. |
|
|
|
**Tokenizer:** It uses the same tokenizer as LLaMA-1-7B. |
|
|
|
**Maximum sequence length:** 2048 tokens. |
|
|
|
**Pretraining data:** The model was pretrained on 7 billion tokens from the Portuguese subset of ClueWeb22, starting with the weights of LLaMA-1-7B and further trained for an additional 10 billion tokens, approximately 1.4 epochs of the training dataset. |
|
|
|
**Data Freshness:** The pretraining data has a cutoff of mid-2022. |
|
|
|
**License:** The licensing is the same as LLaMA-1's, restricting the model's use to research purposes only. |
|
|
|
**Paper:** For more details, please refer to our paper: [Sabiá: Portuguese Large Language Models](https://arxiv.org/pdf/2304.07880.pdf) |
|
|
|
|
|
## Few-shot Example |
|
|
|
Given that Sabiá-7B was trained solely on a language modeling objective without fine-tuning for instruction following, it is recommended for few-shot tasks rather than zero-shot tasks, like in the example below. |
|
|
|
```python |
|
import torch |
|
from transformers import LlamaTokenizer, LlamaForCausalLM |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained("maritaca-ai/sabia-7b") |
|
model = LlamaForCausalLM.from_pretrained( |
|
"maritaca-ai/sabia-7b", |
|
device_map="auto", # Automatically loads the model in the GPU, if there is one. Requires pip install acelerate |
|
low_cpu_mem_usage=True, |
|
torch_dtype=torch.bfloat16 # If your GPU does not support bfloat16, change to torch.float16 |
|
) |
|
|
|
prompt = """Classifique a resenha de filme como "positiva" ou "negativa". |
|
|
|
Resenha: Gostei muito do filme, é o melhor do ano! |
|
Classe: positiva |
|
|
|
Resenha: O filme deixa muito a desejar. |
|
Classe: negativa |
|
|
|
Resenha: Apesar de longo, valeu o ingresso. |
|
Classe:""" |
|
|
|
input_ids = tokenizer(prompt, return_tensors="pt") |
|
|
|
output = model.generate( |
|
input_ids["input_ids"].to("cuda"), |
|
max_length=1024, |
|
eos_token_id=tokenizer.encode("\n")) # Stop generation when a "\n" token is dectected |
|
|
|
# The output contains the input tokens, so we have to skip them. |
|
output = output[0][len(input_ids["input_ids"][0]):] |
|
|
|
print(tokenizer.decode(output, skip_special_tokens=True)) |
|
``` |
|
|
|
If your GPU does not have enough RAM, try using int8 precision. |
|
However, expect some degradation in the model output quality when compared to fp16 or bf16. |
|
```python |
|
model = LlamaForCausalLM.from_pretrained( |
|
"maritaca-ai/sabia-7b", |
|
device_map="auto", |
|
low_cpu_mem_usage=True, |
|
load_in_8bit=True, # Requires pip install bitsandbytes |
|
) |
|
``` |
|
|
|
## Results in Portuguese |
|
|
|
Below we show the results on the Poeta benchmark, which consists of 14 Portuguese datasets. |
|
|
|
For more information on the Normalized Preferred Metric (NPM), please refer to our paper. |
|
|
|
|Model | NPM | |
|
|--|--| |
|
|LLaMA-1-7B| 33.0| |
|
|LLaMA-2-7B| 43.7| |
|
|Sabiá-7B| 48.5| |
|
|
|
## Results in English |
|
|
|
Below we show the average results on 6 English datasets: PIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, and OpenBookQA. |
|
|
|
|Model | NPM | |
|
|--|--| |
|
|LLaMA-1-7B| 50.1| |
|
|Sabiá-7B| 49.0| |
|
|
|
|
|
## Citation |
|
|
|
Please use the following bibtex to cite our paper: |
|
``` |
|
@InProceedings{10.1007/978-3-031-45392-2_15, |
|
author="Pires, Ramon |
|
and Abonizio, Hugo |
|
and Almeida, Thales Sales |
|
and Nogueira, Rodrigo", |
|
editor="Naldi, Murilo C. |
|
and Bianchi, Reinaldo A. C.", |
|
title="Sabi{\'a}: Portuguese Large Language Models", |
|
booktitle="Intelligent Systems", |
|
year="2023", |
|
publisher="Springer Nature Switzerland", |
|
address="Cham", |
|
pages="226--240", |
|
isbn="978-3-031-45392-2" |
|
} |
|
``` |
|
|
|
# [Open Portuguese LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co./datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/maritaca-ai/sabia-7b) |
|
|
|
| Metric | Value | |
|
|--------------------------|---------| |
|
|Average |**47.09**| |
|
|ENEM Challenge (No Images)| 55.07| |
|
|BLUEX (No Images) | 47.71| |
|
|OAB Exams | 41.41| |
|
|Assin2 RTE | 46.68| |
|
|Assin2 STS | 1.89| |
|
|FaQuAD NLI | 58.34| |
|
|HateBR Binary | 61.93| |
|
|PT Hate Speech Binary | 64.13| |
|
|tweetSentBR | 46.64| |
|
|
|
|