--- language: - pt model-index: - name: sabia-7b results: - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 55.07 name: accuracy source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 47.71 name: accuracy source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 41.41 name: accuracy source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 46.68 name: f1-macro source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 15 metrics: - type: pearson value: 1.89 name: pearson source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 58.34 name: f1-macro source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 61.93 name: f1-macro source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 64.13 name: f1-macro source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia-temp/tweetsentbr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 46.64 name: f1-macro source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b name: Open Portuguese LLM Leaderboard --- Sabiá-7B is Portuguese language model developed by [Maritaca AI](https://www.maritaca.ai/). **Input:** The model accepts only text input. **Output:** The Model generates text only. **Model Architecture:** Sabiá-7B is an auto-regressive language model that uses the same architecture of LLaMA-1-7B. **Tokenizer:** It uses the same tokenizer as LLaMA-1-7B. **Maximum sequence length:** 2048 tokens. **Pretraining data:** The model was pretrained on 7 billion tokens from the Portuguese subset of ClueWeb22, starting with the weights of LLaMA-1-7B and further trained for an additional 10 billion tokens, approximately 1.4 epochs of the training dataset. **Data Freshness:** The pretraining data has a cutoff of mid-2022. **License:** The licensing is the same as LLaMA-1's, restricting the model's use to research purposes only. **Paper:** For more details, please refer to our paper: [Sabiá: Portuguese Large Language Models](https://arxiv.org/pdf/2304.07880.pdf) ## Few-shot Example Given that Sabiá-7B was trained solely on a language modeling objective without fine-tuning for instruction following, it is recommended for few-shot tasks rather than zero-shot tasks, like in the example below. ```python import torch from transformers import LlamaTokenizer, LlamaForCausalLM tokenizer = LlamaTokenizer.from_pretrained("maritaca-ai/sabia-7b") model = LlamaForCausalLM.from_pretrained( "maritaca-ai/sabia-7b", device_map="auto", # Automatically loads the model in the GPU, if there is one. Requires pip install acelerate low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 # If your GPU does not support bfloat16, change to torch.float16 ) prompt = """Classifique a resenha de filme como "positiva" ou "negativa". Resenha: Gostei muito do filme, é o melhor do ano! Classe: positiva Resenha: O filme deixa muito a desejar. Classe: negativa Resenha: Apesar de longo, valeu o ingresso. Classe:""" input_ids = tokenizer(prompt, return_tensors="pt") output = model.generate( input_ids["input_ids"].to("cuda"), max_length=1024, eos_token_id=tokenizer.encode("\n")) # Stop generation when a "\n" token is dectected # The output contains the input tokens, so we have to skip them. output = output[0][len(input_ids["input_ids"][0]):] print(tokenizer.decode(output, skip_special_tokens=True)) ``` If your GPU does not have enough RAM, try using int8 precision. However, expect some degradation in the model output quality when compared to fp16 or bf16. ```python model = LlamaForCausalLM.from_pretrained( "maritaca-ai/sabia-7b", device_map="auto", low_cpu_mem_usage=True, load_in_8bit=True, # Requires pip install bitsandbytes ) ``` ## Results in Portuguese Below we show the results on the Poeta benchmark, which consists of 14 Portuguese datasets. For more information on the Normalized Preferred Metric (NPM), please refer to our paper. |Model | NPM | |--|--| |LLaMA-1-7B| 33.0| |LLaMA-2-7B| 43.7| |Sabiá-7B| 48.5| ## Results in English Below we show the average results on 6 English datasets: PIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, and OpenBookQA. |Model | NPM | |--|--| |LLaMA-1-7B| 50.1| |Sabiá-7B| 49.0| ## Citation Please use the following bibtex to cite our paper: ``` @InProceedings{10.1007/978-3-031-45392-2_15, author="Pires, Ramon and Abonizio, Hugo and Almeida, Thales Sales and Nogueira, Rodrigo", editor="Naldi, Murilo C. and Bianchi, Reinaldo A. C.", title="Sabi{\'a}: Portuguese Large Language Models", booktitle="Intelligent Systems", year="2023", publisher="Springer Nature Switzerland", address="Cham", pages="226--240", isbn="978-3-031-45392-2" } ``` # [Open Portuguese LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/maritaca-ai/sabia-7b) | Metric | Value | |--------------------------|---------| |Average |**47.09**| |ENEM Challenge (No Images)| 55.07| |BLUEX (No Images) | 47.71| |OAB Exams | 41.41| |Assin2 RTE | 46.68| |Assin2 STS | 1.89| |FaQuAD NLI | 58.34| |HateBR Binary | 61.93| |PT Hate Speech Binary | 64.13| |tweetSentBR | 46.64|