maixbach's picture
update model card README.md
096f439
|
raw
history blame
2.42 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-trash_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.882689556509299
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-trash_classification
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3380
- Accuracy: 0.8827
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4991 | 1.0 | 22 | 0.5482 | 0.7911 |
| 0.4008 | 2.0 | 44 | 0.5193 | 0.7954 |
| 0.3659 | 3.0 | 66 | 0.4464 | 0.8398 |
| 0.372 | 4.0 | 88 | 0.4384 | 0.8398 |
| 0.3388 | 5.0 | 110 | 0.4281 | 0.8455 |
| 0.2654 | 6.0 | 132 | 0.3618 | 0.8712 |
| 0.2326 | 7.0 | 154 | 0.3550 | 0.8755 |
| 0.2354 | 8.0 | 176 | 0.3401 | 0.8798 |
| 0.1774 | 9.0 | 198 | 0.3372 | 0.8827 |
| 0.1849 | 10.0 | 220 | 0.3380 | 0.8827 |
### Framework versions
- Transformers 4.23.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2