--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-trash_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.882689556509299 --- # swin-tiny-patch4-window7-224-finetuned-trash_classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3380 - Accuracy: 0.8827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4991 | 1.0 | 22 | 0.5482 | 0.7911 | | 0.4008 | 2.0 | 44 | 0.5193 | 0.7954 | | 0.3659 | 3.0 | 66 | 0.4464 | 0.8398 | | 0.372 | 4.0 | 88 | 0.4384 | 0.8398 | | 0.3388 | 5.0 | 110 | 0.4281 | 0.8455 | | 0.2654 | 6.0 | 132 | 0.3618 | 0.8712 | | 0.2326 | 7.0 | 154 | 0.3550 | 0.8755 | | 0.2354 | 8.0 | 176 | 0.3401 | 0.8798 | | 0.1774 | 9.0 | 198 | 0.3372 | 0.8827 | | 0.1849 | 10.0 | 220 | 0.3380 | 0.8827 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2