|
--- |
|
license: mit |
|
--- |
|
Demo on Google Colab: https://colab.research.google.com/drive/1i5plJtq_6HIOuk_x7D-LkYDpcd3SADLf?usp=sharing |
|
|
|
|
|
Similarly as [Qwen-1.5-14B-Chat](https://huggingface.co./Qwen/Qwen1.5-14B-Chat), you can always call this model from the `AutoModel` class. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"ljsabc/Qwen-1.5-14B-Chat-Fujisaki", |
|
torch_dtype="auto", |
|
device_map="auto", |
|
#load_in_4bit=True |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("ljsabc/Qwen-1.5-14B-Chat-Fujisaki") |
|
|
|
prompt = "请撰写一条新的推文。" |
|
messages = [ |
|
{"role": "system", "content": "你将扮演推特用户@ljsabc,你需要撰写你的原创推文或回复别人的推文。所有你的回复都应该使用简体中文书写。"}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(device) |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=512, |
|
temperature=0.95, |
|
top_p=0.99 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |