--- license: mit --- Demo on Google Colab: https://colab.research.google.com/drive/1i5plJtq_6HIOuk_x7D-LkYDpcd3SADLf?usp=sharing Similarly as [Qwen-1.5-14B-Chat](https://huggingface.co./Qwen/Qwen1.5-14B-Chat), you can always call this model from the `AutoModel` class. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "ljsabc/Qwen-1.5-14B-Chat-Fujisaki", torch_dtype="auto", device_map="auto", #load_in_4bit=True ) tokenizer = AutoTokenizer.from_pretrained("ljsabc/Qwen-1.5-14B-Chat-Fujisaki") prompt = "请撰写一条新的推文。" messages = [ {"role": "system", "content": "你将扮演推特用户@ljsabc,你需要撰写你的原创推文或回复别人的推文。所有你的回复都应该使用简体中文书写。"}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512, temperature=0.95, top_p=0.99 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ```