ldos's picture
End of training
256ac22
metadata
license: mit
base_model: facebook/bart-large-xsum
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: text_shortening_model_v38
    results: []

text_shortening_model_v38

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 32.2806
  • Rouge1: 0.0
  • Rouge2: 0.0
  • Rougel: 0.0
  • Rougelsum: 0.0
  • Bert precision: 0.6712
  • Bert recall: 0.6737
  • Average word count: 1.0
  • Max word count: 1
  • Min word count: 1
  • Average token count: 62.0
  • % shortened texts with length > 12: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
2.9479 1.0 145 6.0655 0.1154 0.0035 0.0998 0.0997 0.6949 0.7234 7.8649 46 2 47.0901 8.4084
3.2977 2.0 290 7.9855 0.0026 0.0 0.0026 0.0026 0.6628 0.6805 3.0 3 3 62.0 0.0
2.7673 3.0 435 18.0330 0.0 0.0 0.0 0.0 0.6716 0.677 1.0 1 1 62.0 0.0
2.7007 4.0 580 16.7534 0.0 0.0 0.0 0.0 0.6617 0.6651 1.0 1 1 62.0 0.0
2.6519 5.0 725 19.3665 0.0 0.0 0.0 0.0 0.6636 0.6599 1.0 1 1 62.0 0.0
2.6334 6.0 870 19.0112 0.0 0.0 0.0 0.0 0.6583 0.6639 1.0 1 1 62.0 0.0
2.5888 7.0 1015 20.8393 0.0 0.0 0.0 0.0 0.6602 0.6737 1.0 1 1 62.0 0.0
2.5665 8.0 1160 20.7588 0.0 0.0 0.0 0.0 0.6503 0.6688 1.0 1 1 62.0 0.0
2.546 9.0 1305 23.6869 0.0 0.0 0.0 0.0 0.6646 0.6703 1.0 1 1 62.0 0.0
2.5334 10.0 1450 26.1563 0.0 0.0 0.0 0.0 0.6693 0.6685 1.0 1 1 62.0 0.0
2.5194 11.0 1595 26.2698 0.0 0.0 0.0 0.0 0.6682 0.6743 1.0 1 1 62.0 0.0
2.5152 12.0 1740 30.3763 0.0 0.0 0.0 0.0 0.6582 0.6645 1.0 1 1 62.0 0.0
2.5005 13.0 1885 26.7690 0.0 0.0 0.0 0.0 0.6693 0.6597 1.0 1 1 62.0 0.0
2.4942 14.0 2030 26.8399 0.0 0.0 0.0 0.0 0.6655 0.6674 1.0 1 1 62.0 0.0
2.4766 15.0 2175 26.8788 0.0 0.0 0.0 0.0 0.6689 0.671 1.0 1 1 62.0 0.0
2.4712 16.0 2320 29.2279 0.0 0.0 0.0 0.0 0.6693 0.6669 1.0 1 1 62.0 0.0
2.46 17.0 2465 31.1020 0.0 0.0 0.0 0.0 0.6675 0.6655 1.0 1 1 62.0 0.0
2.4493 18.0 2610 31.4642 0.0 0.0 0.0 0.0 0.6655 0.6737 1.0 1 1 62.0 0.0
2.4419 19.0 2755 31.2733 0.0 0.0 0.0 0.0 0.6593 0.6629 1.0 1 1 62.0 0.0
2.4323 20.0 2900 32.2806 0.0 0.0 0.0 0.0 0.6712 0.6737 1.0 1 1 62.0 0.0

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3