File size: 6,591 Bytes
256ac22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: mit
base_model: facebook/bart-large-xsum
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: text_shortening_model_v38
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# text_shortening_model_v38

This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 32.2806
- Rouge1: 0.0
- Rouge2: 0.0
- Rougel: 0.0
- Rougelsum: 0.0
- Bert precision: 0.6712
- Bert recall: 0.6737
- Average word count: 1.0
- Max word count: 1
- Min word count: 1
- Average token count: 62.0
- % shortened texts with length > 12: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:|
| 2.9479        | 1.0   | 145  | 6.0655          | 0.1154 | 0.0035 | 0.0998 | 0.0997    | 0.6949         | 0.7234      | 7.8649             | 46             | 2              | 47.0901             | 8.4084                             |
| 3.2977        | 2.0   | 290  | 7.9855          | 0.0026 | 0.0    | 0.0026 | 0.0026    | 0.6628         | 0.6805      | 3.0                | 3              | 3              | 62.0                | 0.0                                |
| 2.7673        | 3.0   | 435  | 18.0330         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6716         | 0.677       | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.7007        | 4.0   | 580  | 16.7534         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6617         | 0.6651      | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.6519        | 5.0   | 725  | 19.3665         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6636         | 0.6599      | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.6334        | 6.0   | 870  | 19.0112         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6583         | 0.6639      | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.5888        | 7.0   | 1015 | 20.8393         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6602         | 0.6737      | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.5665        | 8.0   | 1160 | 20.7588         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6503         | 0.6688      | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.546         | 9.0   | 1305 | 23.6869         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6646         | 0.6703      | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.5334        | 10.0  | 1450 | 26.1563         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6693         | 0.6685      | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.5194        | 11.0  | 1595 | 26.2698         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6682         | 0.6743      | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.5152        | 12.0  | 1740 | 30.3763         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6582         | 0.6645      | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.5005        | 13.0  | 1885 | 26.7690         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6693         | 0.6597      | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.4942        | 14.0  | 2030 | 26.8399         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6655         | 0.6674      | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.4766        | 15.0  | 2175 | 26.8788         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6689         | 0.671       | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.4712        | 16.0  | 2320 | 29.2279         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6693         | 0.6669      | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.46          | 17.0  | 2465 | 31.1020         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6675         | 0.6655      | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.4493        | 18.0  | 2610 | 31.4642         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6655         | 0.6737      | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.4419        | 19.0  | 2755 | 31.2733         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6593         | 0.6629      | 1.0                | 1              | 1              | 62.0                | 0.0                                |
| 2.4323        | 20.0  | 2900 | 32.2806         | 0.0    | 0.0    | 0.0    | 0.0       | 0.6712         | 0.6737      | 1.0                | 1              | 1              | 62.0                | 0.0                                |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3