|
--- |
|
language: |
|
- uk |
|
- en |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- translation |
|
- mlx |
|
datasets: |
|
- Helsinki-NLP/opus_paracrawl |
|
- turuta/Multi30k-uk |
|
metrics: |
|
- bleu |
|
pipeline_tag: text-generation |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
inference: false |
|
model-index: |
|
- name: Dragoman |
|
results: |
|
- task: |
|
type: translation |
|
name: English-Ukrainian Translation |
|
dataset: |
|
name: FLORES-101 |
|
type: facebook/flores |
|
config: eng_Latn-ukr_Cyrl |
|
split: devtest |
|
metrics: |
|
- type: bleu |
|
value: 32.34 |
|
name: Test BLEU |
|
--- |
|
|
|
# lang-uk/dragoman-4bit |
|
This model was converted to MLX format from the [`lang-uk/dragoman`](https://huggingface.co./lang-uk/dragoman) adapter fused into the [`mistralai/Mistral-7b-v0.1`](https://huggingface.co./mistralai/Mistral-7B-v0.1) |
|
base model and quantized into 4 bits using mlx-lm version **0.4.0**. |
|
Refer to the [original model card](https://huggingface.co./lang-uk/dragoman) for more details on the model. |
|
## Use with mlx |
|
|
|
```bash |
|
pip install mlx-lm |
|
``` |
|
|
|
```python |
|
from mlx_lm import load, generate |
|
|
|
model, tokenizer = load("lang-uk/dragoman-4bit") |
|
response = generate(model, tokenizer, prompt="[INST] who holds this neighborhood? [/INST]", verbose=True) |
|
``` |
|
|
|
Or use from your shell: |
|
|
|
```console |
|
python -m mlx_lm.generate --model lang-uk/dragoman-4bit --prompt '[INST] who holds this neighborhood? [/INST]' --temp 0 --max-tokens 100 |
|
``` |
|
|