File size: 1,405 Bytes
f73e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c03e03f
f73e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f9287
 
f73e687
 
 
 
 
 
 
 
 
 
 
7963491
f73e687
96f9287
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
language:
- uk
- en
license: apache-2.0
library_name: peft
tags:
- translation
- mlx
datasets:
- Helsinki-NLP/opus_paracrawl
- turuta/Multi30k-uk
metrics:
- bleu
pipeline_tag: text-generation
base_model: mistralai/Mistral-7B-v0.1
inference: false
model-index:
- name: Dragoman
  results:
  - task:
      type: translation
      name: English-Ukrainian Translation
    dataset:
      name: FLORES-101
      type: facebook/flores
      config: eng_Latn-ukr_Cyrl
      split: devtest
    metrics:
    - type: bleu
      value: 32.34
      name: Test BLEU
---

# lang-uk/dragoman-4bit
This model was converted to MLX format from the [`lang-uk/dragoman`](https://huggingface.co./lang-uk/dragoman) adapter fused into the [`mistralai/Mistral-7b-v0.1`](https://huggingface.co./mistralai/Mistral-7B-v0.1)
base model and quantized into 4 bits using mlx-lm version **0.4.0**.
Refer to the [original model card](https://huggingface.co./lang-uk/dragoman) for more details on the model.
## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("lang-uk/dragoman-4bit")
response = generate(model, tokenizer, prompt="[INST] who holds this neighborhood? [/INST]", verbose=True)
```

Or use from your shell:

```console
python -m mlx_lm.generate --model lang-uk/dragoman-4bit --prompt '[INST] who holds this neighborhood? [/INST]' --temp 0 --max-tokens 100
```