lagoon999's picture
Upload README.md with huggingface_hub
3f38aec verified
---
language:
- zh
tags:
- mteb
- llama-cpp
- gguf-my-repo
base_model: chuxin-llm/Chuxin-Embedding
model-index:
- name: Chuxin-Embedding
results:
- task:
type: Retrieval
dataset:
name: MTEB CmedqaRetrieval (default)
type: C-MTEB/CmedqaRetrieval
config: default
split: dev
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
metrics:
- type: map_at_1
value: 33.391999999999996
- type: map_at_10
value: 48.715
- type: map_at_100
value: 50.381
- type: map_at_1000
value: 50.456
- type: map_at_3
value: 43.708999999999996
- type: map_at_5
value: 46.405
- type: mrr_at_1
value: 48.612
- type: mrr_at_10
value: 58.67099999999999
- type: mrr_at_100
value: 59.38
- type: mrr_at_1000
value: 59.396
- type: mrr_at_3
value: 55.906
- type: mrr_at_5
value: 57.421
- type: ndcg_at_1
value: 48.612
- type: ndcg_at_10
value: 56.581
- type: ndcg_at_100
value: 62.422999999999995
- type: ndcg_at_1000
value: 63.476
- type: ndcg_at_3
value: 50.271
- type: ndcg_at_5
value: 52.79899999999999
- type: precision_at_1
value: 48.612
- type: precision_at_10
value: 11.995000000000001
- type: precision_at_100
value: 1.696
- type: precision_at_1000
value: 0.185
- type: precision_at_3
value: 27.465
- type: precision_at_5
value: 19.675
- type: recall_at_1
value: 33.391999999999996
- type: recall_at_10
value: 69.87100000000001
- type: recall_at_100
value: 93.078
- type: recall_at_1000
value: 99.55199999999999
- type: recall_at_3
value: 50.939
- type: recall_at_5
value: 58.714
- type: main_score
value: 56.581
- task:
type: Retrieval
dataset:
name: MTEB CovidRetrieval (default)
type: C-MTEB/CovidRetrieval
config: default
split: dev
revision: 1271c7809071a13532e05f25fb53511ffce77117
metrics:
- type: map_at_1
value: 71.918
- type: map_at_10
value: 80.609
- type: map_at_100
value: 80.796
- type: map_at_1000
value: 80.798
- type: map_at_3
value: 79.224
- type: map_at_5
value: 79.96
- type: mrr_at_1
value: 72.076
- type: mrr_at_10
value: 80.61399999999999
- type: mrr_at_100
value: 80.801
- type: mrr_at_1000
value: 80.803
- type: mrr_at_3
value: 79.276
- type: mrr_at_5
value: 80.025
- type: ndcg_at_1
value: 72.076
- type: ndcg_at_10
value: 84.286
- type: ndcg_at_100
value: 85.14500000000001
- type: ndcg_at_1000
value: 85.21
- type: ndcg_at_3
value: 81.45400000000001
- type: ndcg_at_5
value: 82.781
- type: precision_at_1
value: 72.076
- type: precision_at_10
value: 9.663
- type: precision_at_100
value: 1.005
- type: precision_at_1000
value: 0.101
- type: precision_at_3
value: 29.398999999999997
- type: precision_at_5
value: 18.335
- type: recall_at_1
value: 71.918
- type: recall_at_10
value: 95.574
- type: recall_at_100
value: 99.473
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 87.82900000000001
- type: recall_at_5
value: 90.991
- type: main_score
value: 84.286
- task:
type: Retrieval
dataset:
name: MTEB DuRetrieval (default)
type: C-MTEB/DuRetrieval
config: default
split: dev
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
metrics:
- type: map_at_1
value: 25.019999999999996
- type: map_at_10
value: 77.744
- type: map_at_100
value: 80.562
- type: map_at_1000
value: 80.60300000000001
- type: map_at_3
value: 52.642999999999994
- type: map_at_5
value: 67.179
- type: mrr_at_1
value: 86.5
- type: mrr_at_10
value: 91.024
- type: mrr_at_100
value: 91.09
- type: mrr_at_1000
value: 91.093
- type: mrr_at_3
value: 90.558
- type: mrr_at_5
value: 90.913
- type: ndcg_at_1
value: 86.5
- type: ndcg_at_10
value: 85.651
- type: ndcg_at_100
value: 88.504
- type: ndcg_at_1000
value: 88.887
- type: ndcg_at_3
value: 82.707
- type: ndcg_at_5
value: 82.596
- type: precision_at_1
value: 86.5
- type: precision_at_10
value: 41.595
- type: precision_at_100
value: 4.7940000000000005
- type: precision_at_1000
value: 0.48900000000000005
- type: precision_at_3
value: 74.233
- type: precision_at_5
value: 63.68000000000001
- type: recall_at_1
value: 25.019999999999996
- type: recall_at_10
value: 88.114
- type: recall_at_100
value: 97.442
- type: recall_at_1000
value: 99.39099999999999
- type: recall_at_3
value: 55.397
- type: recall_at_5
value: 73.095
- type: main_score
value: 85.651
- task:
type: Retrieval
dataset:
name: MTEB EcomRetrieval (default)
type: C-MTEB/EcomRetrieval
config: default
split: dev
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
metrics:
- type: map_at_1
value: 55.60000000000001
- type: map_at_10
value: 67.891
- type: map_at_100
value: 68.28699999999999
- type: map_at_1000
value: 68.28699999999999
- type: map_at_3
value: 64.86699999999999
- type: map_at_5
value: 66.652
- type: mrr_at_1
value: 55.60000000000001
- type: mrr_at_10
value: 67.891
- type: mrr_at_100
value: 68.28699999999999
- type: mrr_at_1000
value: 68.28699999999999
- type: mrr_at_3
value: 64.86699999999999
- type: mrr_at_5
value: 66.652
- type: ndcg_at_1
value: 55.60000000000001
- type: ndcg_at_10
value: 74.01100000000001
- type: ndcg_at_100
value: 75.602
- type: ndcg_at_1000
value: 75.602
- type: ndcg_at_3
value: 67.833
- type: ndcg_at_5
value: 71.005
- type: precision_at_1
value: 55.60000000000001
- type: precision_at_10
value: 9.33
- type: precision_at_100
value: 1.0
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 25.467000000000002
- type: precision_at_5
value: 16.8
- type: recall_at_1
value: 55.60000000000001
- type: recall_at_10
value: 93.30000000000001
- type: recall_at_100
value: 100.0
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 76.4
- type: recall_at_5
value: 84.0
- type: main_score
value: 74.01100000000001
- task:
type: Retrieval
dataset:
name: MTEB MMarcoRetrieval (default)
type: C-MTEB/MMarcoRetrieval
config: default
split: dev
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
metrics:
- type: map_at_1
value: 66.24799999999999
- type: map_at_10
value: 75.356
- type: map_at_100
value: 75.653
- type: map_at_1000
value: 75.664
- type: map_at_3
value: 73.515
- type: map_at_5
value: 74.67099999999999
- type: mrr_at_1
value: 68.496
- type: mrr_at_10
value: 75.91499999999999
- type: mrr_at_100
value: 76.17399999999999
- type: mrr_at_1000
value: 76.184
- type: mrr_at_3
value: 74.315
- type: mrr_at_5
value: 75.313
- type: ndcg_at_1
value: 68.496
- type: ndcg_at_10
value: 79.065
- type: ndcg_at_100
value: 80.417
- type: ndcg_at_1000
value: 80.72399999999999
- type: ndcg_at_3
value: 75.551
- type: ndcg_at_5
value: 77.505
- type: precision_at_1
value: 68.496
- type: precision_at_10
value: 9.563
- type: precision_at_100
value: 1.024
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 28.391
- type: precision_at_5
value: 18.086
- type: recall_at_1
value: 66.24799999999999
- type: recall_at_10
value: 89.97
- type: recall_at_100
value: 96.13199999999999
- type: recall_at_1000
value: 98.551
- type: recall_at_3
value: 80.624
- type: recall_at_5
value: 85.271
- type: main_score
value: 79.065
- task:
type: Retrieval
dataset:
name: MTEB MedicalRetrieval (default)
type: C-MTEB/MedicalRetrieval
config: default
split: dev
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
metrics:
- type: map_at_1
value: 61.8
- type: map_at_10
value: 71.101
- type: map_at_100
value: 71.576
- type: map_at_1000
value: 71.583
- type: map_at_3
value: 68.867
- type: map_at_5
value: 70.272
- type: mrr_at_1
value: 61.9
- type: mrr_at_10
value: 71.158
- type: mrr_at_100
value: 71.625
- type: mrr_at_1000
value: 71.631
- type: mrr_at_3
value: 68.917
- type: mrr_at_5
value: 70.317
- type: ndcg_at_1
value: 61.8
- type: ndcg_at_10
value: 75.624
- type: ndcg_at_100
value: 77.702
- type: ndcg_at_1000
value: 77.836
- type: ndcg_at_3
value: 71.114
- type: ndcg_at_5
value: 73.636
- type: precision_at_1
value: 61.8
- type: precision_at_10
value: 8.98
- type: precision_at_100
value: 0.9900000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 25.867
- type: precision_at_5
value: 16.74
- type: recall_at_1
value: 61.8
- type: recall_at_10
value: 89.8
- type: recall_at_100
value: 99.0
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 77.60000000000001
- type: recall_at_5
value: 83.7
- type: main_score
value: 75.624
- task:
type: Retrieval
dataset:
name: MTEB T2Retrieval (default)
type: C-MTEB/T2Retrieval
config: default
split: dev
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
metrics:
- type: map_at_1
value: 27.173000000000002
- type: map_at_10
value: 76.454
- type: map_at_100
value: 80.021
- type: map_at_1000
value: 80.092
- type: map_at_3
value: 53.876999999999995
- type: map_at_5
value: 66.122
- type: mrr_at_1
value: 89.519
- type: mrr_at_10
value: 92.091
- type: mrr_at_100
value: 92.179
- type: mrr_at_1000
value: 92.183
- type: mrr_at_3
value: 91.655
- type: mrr_at_5
value: 91.94
- type: ndcg_at_1
value: 89.519
- type: ndcg_at_10
value: 84.043
- type: ndcg_at_100
value: 87.60900000000001
- type: ndcg_at_1000
value: 88.32799999999999
- type: ndcg_at_3
value: 85.623
- type: ndcg_at_5
value: 84.111
- type: precision_at_1
value: 89.519
- type: precision_at_10
value: 41.760000000000005
- type: precision_at_100
value: 4.982
- type: precision_at_1000
value: 0.515
- type: precision_at_3
value: 74.944
- type: precision_at_5
value: 62.705999999999996
- type: recall_at_1
value: 27.173000000000002
- type: recall_at_10
value: 82.878
- type: recall_at_100
value: 94.527
- type: recall_at_1000
value: 98.24199999999999
- type: recall_at_3
value: 55.589
- type: recall_at_5
value: 69.476
- type: main_score
value: 84.043
- task:
type: Retrieval
dataset:
name: MTEB VideoRetrieval (default)
type: C-MTEB/VideoRetrieval
config: default
split: dev
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
metrics:
- type: map_at_1
value: 70.1
- type: map_at_10
value: 79.62
- type: map_at_100
value: 79.804
- type: map_at_1000
value: 79.804
- type: map_at_3
value: 77.81700000000001
- type: map_at_5
value: 79.037
- type: mrr_at_1
value: 70.1
- type: mrr_at_10
value: 79.62
- type: mrr_at_100
value: 79.804
- type: mrr_at_1000
value: 79.804
- type: mrr_at_3
value: 77.81700000000001
- type: mrr_at_5
value: 79.037
- type: ndcg_at_1
value: 70.1
- type: ndcg_at_10
value: 83.83500000000001
- type: ndcg_at_100
value: 84.584
- type: ndcg_at_1000
value: 84.584
- type: ndcg_at_3
value: 80.282
- type: ndcg_at_5
value: 82.472
- type: precision_at_1
value: 70.1
- type: precision_at_10
value: 9.68
- type: precision_at_100
value: 1.0
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 29.133
- type: precision_at_5
value: 18.54
- type: recall_at_1
value: 70.1
- type: recall_at_10
value: 96.8
- type: recall_at_100
value: 100.0
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 87.4
- type: recall_at_5
value: 92.7
- type: main_score
value: 83.83500000000001
---
# lagoon999/Chuxin-Embedding-Q4_K_M-GGUF
This model was converted to GGUF format from [`chuxin-llm/Chuxin-Embedding`](https://huggingface.co./chuxin-llm/Chuxin-Embedding) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co./chuxin-llm/Chuxin-Embedding) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -c 2048
```