Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,624 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
tags:
|
5 |
+
- mteb
|
6 |
+
- llama-cpp
|
7 |
+
- gguf-my-repo
|
8 |
+
base_model: chuxin-llm/Chuxin-Embedding
|
9 |
+
model-index:
|
10 |
+
- name: Chuxin-Embedding
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: Retrieval
|
14 |
+
dataset:
|
15 |
+
name: MTEB CmedqaRetrieval (default)
|
16 |
+
type: C-MTEB/CmedqaRetrieval
|
17 |
+
config: default
|
18 |
+
split: dev
|
19 |
+
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
|
20 |
+
metrics:
|
21 |
+
- type: map_at_1
|
22 |
+
value: 33.391999999999996
|
23 |
+
- type: map_at_10
|
24 |
+
value: 48.715
|
25 |
+
- type: map_at_100
|
26 |
+
value: 50.381
|
27 |
+
- type: map_at_1000
|
28 |
+
value: 50.456
|
29 |
+
- type: map_at_3
|
30 |
+
value: 43.708999999999996
|
31 |
+
- type: map_at_5
|
32 |
+
value: 46.405
|
33 |
+
- type: mrr_at_1
|
34 |
+
value: 48.612
|
35 |
+
- type: mrr_at_10
|
36 |
+
value: 58.67099999999999
|
37 |
+
- type: mrr_at_100
|
38 |
+
value: 59.38
|
39 |
+
- type: mrr_at_1000
|
40 |
+
value: 59.396
|
41 |
+
- type: mrr_at_3
|
42 |
+
value: 55.906
|
43 |
+
- type: mrr_at_5
|
44 |
+
value: 57.421
|
45 |
+
- type: ndcg_at_1
|
46 |
+
value: 48.612
|
47 |
+
- type: ndcg_at_10
|
48 |
+
value: 56.581
|
49 |
+
- type: ndcg_at_100
|
50 |
+
value: 62.422999999999995
|
51 |
+
- type: ndcg_at_1000
|
52 |
+
value: 63.476
|
53 |
+
- type: ndcg_at_3
|
54 |
+
value: 50.271
|
55 |
+
- type: ndcg_at_5
|
56 |
+
value: 52.79899999999999
|
57 |
+
- type: precision_at_1
|
58 |
+
value: 48.612
|
59 |
+
- type: precision_at_10
|
60 |
+
value: 11.995000000000001
|
61 |
+
- type: precision_at_100
|
62 |
+
value: 1.696
|
63 |
+
- type: precision_at_1000
|
64 |
+
value: 0.185
|
65 |
+
- type: precision_at_3
|
66 |
+
value: 27.465
|
67 |
+
- type: precision_at_5
|
68 |
+
value: 19.675
|
69 |
+
- type: recall_at_1
|
70 |
+
value: 33.391999999999996
|
71 |
+
- type: recall_at_10
|
72 |
+
value: 69.87100000000001
|
73 |
+
- type: recall_at_100
|
74 |
+
value: 93.078
|
75 |
+
- type: recall_at_1000
|
76 |
+
value: 99.55199999999999
|
77 |
+
- type: recall_at_3
|
78 |
+
value: 50.939
|
79 |
+
- type: recall_at_5
|
80 |
+
value: 58.714
|
81 |
+
- type: main_score
|
82 |
+
value: 56.581
|
83 |
+
- task:
|
84 |
+
type: Retrieval
|
85 |
+
dataset:
|
86 |
+
name: MTEB CovidRetrieval (default)
|
87 |
+
type: C-MTEB/CovidRetrieval
|
88 |
+
config: default
|
89 |
+
split: dev
|
90 |
+
revision: 1271c7809071a13532e05f25fb53511ffce77117
|
91 |
+
metrics:
|
92 |
+
- type: map_at_1
|
93 |
+
value: 71.918
|
94 |
+
- type: map_at_10
|
95 |
+
value: 80.609
|
96 |
+
- type: map_at_100
|
97 |
+
value: 80.796
|
98 |
+
- type: map_at_1000
|
99 |
+
value: 80.798
|
100 |
+
- type: map_at_3
|
101 |
+
value: 79.224
|
102 |
+
- type: map_at_5
|
103 |
+
value: 79.96
|
104 |
+
- type: mrr_at_1
|
105 |
+
value: 72.076
|
106 |
+
- type: mrr_at_10
|
107 |
+
value: 80.61399999999999
|
108 |
+
- type: mrr_at_100
|
109 |
+
value: 80.801
|
110 |
+
- type: mrr_at_1000
|
111 |
+
value: 80.803
|
112 |
+
- type: mrr_at_3
|
113 |
+
value: 79.276
|
114 |
+
- type: mrr_at_5
|
115 |
+
value: 80.025
|
116 |
+
- type: ndcg_at_1
|
117 |
+
value: 72.076
|
118 |
+
- type: ndcg_at_10
|
119 |
+
value: 84.286
|
120 |
+
- type: ndcg_at_100
|
121 |
+
value: 85.14500000000001
|
122 |
+
- type: ndcg_at_1000
|
123 |
+
value: 85.21
|
124 |
+
- type: ndcg_at_3
|
125 |
+
value: 81.45400000000001
|
126 |
+
- type: ndcg_at_5
|
127 |
+
value: 82.781
|
128 |
+
- type: precision_at_1
|
129 |
+
value: 72.076
|
130 |
+
- type: precision_at_10
|
131 |
+
value: 9.663
|
132 |
+
- type: precision_at_100
|
133 |
+
value: 1.005
|
134 |
+
- type: precision_at_1000
|
135 |
+
value: 0.101
|
136 |
+
- type: precision_at_3
|
137 |
+
value: 29.398999999999997
|
138 |
+
- type: precision_at_5
|
139 |
+
value: 18.335
|
140 |
+
- type: recall_at_1
|
141 |
+
value: 71.918
|
142 |
+
- type: recall_at_10
|
143 |
+
value: 95.574
|
144 |
+
- type: recall_at_100
|
145 |
+
value: 99.473
|
146 |
+
- type: recall_at_1000
|
147 |
+
value: 100.0
|
148 |
+
- type: recall_at_3
|
149 |
+
value: 87.82900000000001
|
150 |
+
- type: recall_at_5
|
151 |
+
value: 90.991
|
152 |
+
- type: main_score
|
153 |
+
value: 84.286
|
154 |
+
- task:
|
155 |
+
type: Retrieval
|
156 |
+
dataset:
|
157 |
+
name: MTEB DuRetrieval (default)
|
158 |
+
type: C-MTEB/DuRetrieval
|
159 |
+
config: default
|
160 |
+
split: dev
|
161 |
+
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
|
162 |
+
metrics:
|
163 |
+
- type: map_at_1
|
164 |
+
value: 25.019999999999996
|
165 |
+
- type: map_at_10
|
166 |
+
value: 77.744
|
167 |
+
- type: map_at_100
|
168 |
+
value: 80.562
|
169 |
+
- type: map_at_1000
|
170 |
+
value: 80.60300000000001
|
171 |
+
- type: map_at_3
|
172 |
+
value: 52.642999999999994
|
173 |
+
- type: map_at_5
|
174 |
+
value: 67.179
|
175 |
+
- type: mrr_at_1
|
176 |
+
value: 86.5
|
177 |
+
- type: mrr_at_10
|
178 |
+
value: 91.024
|
179 |
+
- type: mrr_at_100
|
180 |
+
value: 91.09
|
181 |
+
- type: mrr_at_1000
|
182 |
+
value: 91.093
|
183 |
+
- type: mrr_at_3
|
184 |
+
value: 90.558
|
185 |
+
- type: mrr_at_5
|
186 |
+
value: 90.913
|
187 |
+
- type: ndcg_at_1
|
188 |
+
value: 86.5
|
189 |
+
- type: ndcg_at_10
|
190 |
+
value: 85.651
|
191 |
+
- type: ndcg_at_100
|
192 |
+
value: 88.504
|
193 |
+
- type: ndcg_at_1000
|
194 |
+
value: 88.887
|
195 |
+
- type: ndcg_at_3
|
196 |
+
value: 82.707
|
197 |
+
- type: ndcg_at_5
|
198 |
+
value: 82.596
|
199 |
+
- type: precision_at_1
|
200 |
+
value: 86.5
|
201 |
+
- type: precision_at_10
|
202 |
+
value: 41.595
|
203 |
+
- type: precision_at_100
|
204 |
+
value: 4.7940000000000005
|
205 |
+
- type: precision_at_1000
|
206 |
+
value: 0.48900000000000005
|
207 |
+
- type: precision_at_3
|
208 |
+
value: 74.233
|
209 |
+
- type: precision_at_5
|
210 |
+
value: 63.68000000000001
|
211 |
+
- type: recall_at_1
|
212 |
+
value: 25.019999999999996
|
213 |
+
- type: recall_at_10
|
214 |
+
value: 88.114
|
215 |
+
- type: recall_at_100
|
216 |
+
value: 97.442
|
217 |
+
- type: recall_at_1000
|
218 |
+
value: 99.39099999999999
|
219 |
+
- type: recall_at_3
|
220 |
+
value: 55.397
|
221 |
+
- type: recall_at_5
|
222 |
+
value: 73.095
|
223 |
+
- type: main_score
|
224 |
+
value: 85.651
|
225 |
+
- task:
|
226 |
+
type: Retrieval
|
227 |
+
dataset:
|
228 |
+
name: MTEB EcomRetrieval (default)
|
229 |
+
type: C-MTEB/EcomRetrieval
|
230 |
+
config: default
|
231 |
+
split: dev
|
232 |
+
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
|
233 |
+
metrics:
|
234 |
+
- type: map_at_1
|
235 |
+
value: 55.60000000000001
|
236 |
+
- type: map_at_10
|
237 |
+
value: 67.891
|
238 |
+
- type: map_at_100
|
239 |
+
value: 68.28699999999999
|
240 |
+
- type: map_at_1000
|
241 |
+
value: 68.28699999999999
|
242 |
+
- type: map_at_3
|
243 |
+
value: 64.86699999999999
|
244 |
+
- type: map_at_5
|
245 |
+
value: 66.652
|
246 |
+
- type: mrr_at_1
|
247 |
+
value: 55.60000000000001
|
248 |
+
- type: mrr_at_10
|
249 |
+
value: 67.891
|
250 |
+
- type: mrr_at_100
|
251 |
+
value: 68.28699999999999
|
252 |
+
- type: mrr_at_1000
|
253 |
+
value: 68.28699999999999
|
254 |
+
- type: mrr_at_3
|
255 |
+
value: 64.86699999999999
|
256 |
+
- type: mrr_at_5
|
257 |
+
value: 66.652
|
258 |
+
- type: ndcg_at_1
|
259 |
+
value: 55.60000000000001
|
260 |
+
- type: ndcg_at_10
|
261 |
+
value: 74.01100000000001
|
262 |
+
- type: ndcg_at_100
|
263 |
+
value: 75.602
|
264 |
+
- type: ndcg_at_1000
|
265 |
+
value: 75.602
|
266 |
+
- type: ndcg_at_3
|
267 |
+
value: 67.833
|
268 |
+
- type: ndcg_at_5
|
269 |
+
value: 71.005
|
270 |
+
- type: precision_at_1
|
271 |
+
value: 55.60000000000001
|
272 |
+
- type: precision_at_10
|
273 |
+
value: 9.33
|
274 |
+
- type: precision_at_100
|
275 |
+
value: 1.0
|
276 |
+
- type: precision_at_1000
|
277 |
+
value: 0.1
|
278 |
+
- type: precision_at_3
|
279 |
+
value: 25.467000000000002
|
280 |
+
- type: precision_at_5
|
281 |
+
value: 16.8
|
282 |
+
- type: recall_at_1
|
283 |
+
value: 55.60000000000001
|
284 |
+
- type: recall_at_10
|
285 |
+
value: 93.30000000000001
|
286 |
+
- type: recall_at_100
|
287 |
+
value: 100.0
|
288 |
+
- type: recall_at_1000
|
289 |
+
value: 100.0
|
290 |
+
- type: recall_at_3
|
291 |
+
value: 76.4
|
292 |
+
- type: recall_at_5
|
293 |
+
value: 84.0
|
294 |
+
- type: main_score
|
295 |
+
value: 74.01100000000001
|
296 |
+
- task:
|
297 |
+
type: Retrieval
|
298 |
+
dataset:
|
299 |
+
name: MTEB MMarcoRetrieval (default)
|
300 |
+
type: C-MTEB/MMarcoRetrieval
|
301 |
+
config: default
|
302 |
+
split: dev
|
303 |
+
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
|
304 |
+
metrics:
|
305 |
+
- type: map_at_1
|
306 |
+
value: 66.24799999999999
|
307 |
+
- type: map_at_10
|
308 |
+
value: 75.356
|
309 |
+
- type: map_at_100
|
310 |
+
value: 75.653
|
311 |
+
- type: map_at_1000
|
312 |
+
value: 75.664
|
313 |
+
- type: map_at_3
|
314 |
+
value: 73.515
|
315 |
+
- type: map_at_5
|
316 |
+
value: 74.67099999999999
|
317 |
+
- type: mrr_at_1
|
318 |
+
value: 68.496
|
319 |
+
- type: mrr_at_10
|
320 |
+
value: 75.91499999999999
|
321 |
+
- type: mrr_at_100
|
322 |
+
value: 76.17399999999999
|
323 |
+
- type: mrr_at_1000
|
324 |
+
value: 76.184
|
325 |
+
- type: mrr_at_3
|
326 |
+
value: 74.315
|
327 |
+
- type: mrr_at_5
|
328 |
+
value: 75.313
|
329 |
+
- type: ndcg_at_1
|
330 |
+
value: 68.496
|
331 |
+
- type: ndcg_at_10
|
332 |
+
value: 79.065
|
333 |
+
- type: ndcg_at_100
|
334 |
+
value: 80.417
|
335 |
+
- type: ndcg_at_1000
|
336 |
+
value: 80.72399999999999
|
337 |
+
- type: ndcg_at_3
|
338 |
+
value: 75.551
|
339 |
+
- type: ndcg_at_5
|
340 |
+
value: 77.505
|
341 |
+
- type: precision_at_1
|
342 |
+
value: 68.496
|
343 |
+
- type: precision_at_10
|
344 |
+
value: 9.563
|
345 |
+
- type: precision_at_100
|
346 |
+
value: 1.024
|
347 |
+
- type: precision_at_1000
|
348 |
+
value: 0.105
|
349 |
+
- type: precision_at_3
|
350 |
+
value: 28.391
|
351 |
+
- type: precision_at_5
|
352 |
+
value: 18.086
|
353 |
+
- type: recall_at_1
|
354 |
+
value: 66.24799999999999
|
355 |
+
- type: recall_at_10
|
356 |
+
value: 89.97
|
357 |
+
- type: recall_at_100
|
358 |
+
value: 96.13199999999999
|
359 |
+
- type: recall_at_1000
|
360 |
+
value: 98.551
|
361 |
+
- type: recall_at_3
|
362 |
+
value: 80.624
|
363 |
+
- type: recall_at_5
|
364 |
+
value: 85.271
|
365 |
+
- type: main_score
|
366 |
+
value: 79.065
|
367 |
+
- task:
|
368 |
+
type: Retrieval
|
369 |
+
dataset:
|
370 |
+
name: MTEB MedicalRetrieval (default)
|
371 |
+
type: C-MTEB/MedicalRetrieval
|
372 |
+
config: default
|
373 |
+
split: dev
|
374 |
+
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
|
375 |
+
metrics:
|
376 |
+
- type: map_at_1
|
377 |
+
value: 61.8
|
378 |
+
- type: map_at_10
|
379 |
+
value: 71.101
|
380 |
+
- type: map_at_100
|
381 |
+
value: 71.576
|
382 |
+
- type: map_at_1000
|
383 |
+
value: 71.583
|
384 |
+
- type: map_at_3
|
385 |
+
value: 68.867
|
386 |
+
- type: map_at_5
|
387 |
+
value: 70.272
|
388 |
+
- type: mrr_at_1
|
389 |
+
value: 61.9
|
390 |
+
- type: mrr_at_10
|
391 |
+
value: 71.158
|
392 |
+
- type: mrr_at_100
|
393 |
+
value: 71.625
|
394 |
+
- type: mrr_at_1000
|
395 |
+
value: 71.631
|
396 |
+
- type: mrr_at_3
|
397 |
+
value: 68.917
|
398 |
+
- type: mrr_at_5
|
399 |
+
value: 70.317
|
400 |
+
- type: ndcg_at_1
|
401 |
+
value: 61.8
|
402 |
+
- type: ndcg_at_10
|
403 |
+
value: 75.624
|
404 |
+
- type: ndcg_at_100
|
405 |
+
value: 77.702
|
406 |
+
- type: ndcg_at_1000
|
407 |
+
value: 77.836
|
408 |
+
- type: ndcg_at_3
|
409 |
+
value: 71.114
|
410 |
+
- type: ndcg_at_5
|
411 |
+
value: 73.636
|
412 |
+
- type: precision_at_1
|
413 |
+
value: 61.8
|
414 |
+
- type: precision_at_10
|
415 |
+
value: 8.98
|
416 |
+
- type: precision_at_100
|
417 |
+
value: 0.9900000000000001
|
418 |
+
- type: precision_at_1000
|
419 |
+
value: 0.1
|
420 |
+
- type: precision_at_3
|
421 |
+
value: 25.867
|
422 |
+
- type: precision_at_5
|
423 |
+
value: 16.74
|
424 |
+
- type: recall_at_1
|
425 |
+
value: 61.8
|
426 |
+
- type: recall_at_10
|
427 |
+
value: 89.8
|
428 |
+
- type: recall_at_100
|
429 |
+
value: 99.0
|
430 |
+
- type: recall_at_1000
|
431 |
+
value: 100.0
|
432 |
+
- type: recall_at_3
|
433 |
+
value: 77.60000000000001
|
434 |
+
- type: recall_at_5
|
435 |
+
value: 83.7
|
436 |
+
- type: main_score
|
437 |
+
value: 75.624
|
438 |
+
- task:
|
439 |
+
type: Retrieval
|
440 |
+
dataset:
|
441 |
+
name: MTEB T2Retrieval (default)
|
442 |
+
type: C-MTEB/T2Retrieval
|
443 |
+
config: default
|
444 |
+
split: dev
|
445 |
+
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
|
446 |
+
metrics:
|
447 |
+
- type: map_at_1
|
448 |
+
value: 27.173000000000002
|
449 |
+
- type: map_at_10
|
450 |
+
value: 76.454
|
451 |
+
- type: map_at_100
|
452 |
+
value: 80.021
|
453 |
+
- type: map_at_1000
|
454 |
+
value: 80.092
|
455 |
+
- type: map_at_3
|
456 |
+
value: 53.876999999999995
|
457 |
+
- type: map_at_5
|
458 |
+
value: 66.122
|
459 |
+
- type: mrr_at_1
|
460 |
+
value: 89.519
|
461 |
+
- type: mrr_at_10
|
462 |
+
value: 92.091
|
463 |
+
- type: mrr_at_100
|
464 |
+
value: 92.179
|
465 |
+
- type: mrr_at_1000
|
466 |
+
value: 92.183
|
467 |
+
- type: mrr_at_3
|
468 |
+
value: 91.655
|
469 |
+
- type: mrr_at_5
|
470 |
+
value: 91.94
|
471 |
+
- type: ndcg_at_1
|
472 |
+
value: 89.519
|
473 |
+
- type: ndcg_at_10
|
474 |
+
value: 84.043
|
475 |
+
- type: ndcg_at_100
|
476 |
+
value: 87.60900000000001
|
477 |
+
- type: ndcg_at_1000
|
478 |
+
value: 88.32799999999999
|
479 |
+
- type: ndcg_at_3
|
480 |
+
value: 85.623
|
481 |
+
- type: ndcg_at_5
|
482 |
+
value: 84.111
|
483 |
+
- type: precision_at_1
|
484 |
+
value: 89.519
|
485 |
+
- type: precision_at_10
|
486 |
+
value: 41.760000000000005
|
487 |
+
- type: precision_at_100
|
488 |
+
value: 4.982
|
489 |
+
- type: precision_at_1000
|
490 |
+
value: 0.515
|
491 |
+
- type: precision_at_3
|
492 |
+
value: 74.944
|
493 |
+
- type: precision_at_5
|
494 |
+
value: 62.705999999999996
|
495 |
+
- type: recall_at_1
|
496 |
+
value: 27.173000000000002
|
497 |
+
- type: recall_at_10
|
498 |
+
value: 82.878
|
499 |
+
- type: recall_at_100
|
500 |
+
value: 94.527
|
501 |
+
- type: recall_at_1000
|
502 |
+
value: 98.24199999999999
|
503 |
+
- type: recall_at_3
|
504 |
+
value: 55.589
|
505 |
+
- type: recall_at_5
|
506 |
+
value: 69.476
|
507 |
+
- type: main_score
|
508 |
+
value: 84.043
|
509 |
+
- task:
|
510 |
+
type: Retrieval
|
511 |
+
dataset:
|
512 |
+
name: MTEB VideoRetrieval (default)
|
513 |
+
type: C-MTEB/VideoRetrieval
|
514 |
+
config: default
|
515 |
+
split: dev
|
516 |
+
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
|
517 |
+
metrics:
|
518 |
+
- type: map_at_1
|
519 |
+
value: 70.1
|
520 |
+
- type: map_at_10
|
521 |
+
value: 79.62
|
522 |
+
- type: map_at_100
|
523 |
+
value: 79.804
|
524 |
+
- type: map_at_1000
|
525 |
+
value: 79.804
|
526 |
+
- type: map_at_3
|
527 |
+
value: 77.81700000000001
|
528 |
+
- type: map_at_5
|
529 |
+
value: 79.037
|
530 |
+
- type: mrr_at_1
|
531 |
+
value: 70.1
|
532 |
+
- type: mrr_at_10
|
533 |
+
value: 79.62
|
534 |
+
- type: mrr_at_100
|
535 |
+
value: 79.804
|
536 |
+
- type: mrr_at_1000
|
537 |
+
value: 79.804
|
538 |
+
- type: mrr_at_3
|
539 |
+
value: 77.81700000000001
|
540 |
+
- type: mrr_at_5
|
541 |
+
value: 79.037
|
542 |
+
- type: ndcg_at_1
|
543 |
+
value: 70.1
|
544 |
+
- type: ndcg_at_10
|
545 |
+
value: 83.83500000000001
|
546 |
+
- type: ndcg_at_100
|
547 |
+
value: 84.584
|
548 |
+
- type: ndcg_at_1000
|
549 |
+
value: 84.584
|
550 |
+
- type: ndcg_at_3
|
551 |
+
value: 80.282
|
552 |
+
- type: ndcg_at_5
|
553 |
+
value: 82.472
|
554 |
+
- type: precision_at_1
|
555 |
+
value: 70.1
|
556 |
+
- type: precision_at_10
|
557 |
+
value: 9.68
|
558 |
+
- type: precision_at_100
|
559 |
+
value: 1.0
|
560 |
+
- type: precision_at_1000
|
561 |
+
value: 0.1
|
562 |
+
- type: precision_at_3
|
563 |
+
value: 29.133
|
564 |
+
- type: precision_at_5
|
565 |
+
value: 18.54
|
566 |
+
- type: recall_at_1
|
567 |
+
value: 70.1
|
568 |
+
- type: recall_at_10
|
569 |
+
value: 96.8
|
570 |
+
- type: recall_at_100
|
571 |
+
value: 100.0
|
572 |
+
- type: recall_at_1000
|
573 |
+
value: 100.0
|
574 |
+
- type: recall_at_3
|
575 |
+
value: 87.4
|
576 |
+
- type: recall_at_5
|
577 |
+
value: 92.7
|
578 |
+
- type: main_score
|
579 |
+
value: 83.83500000000001
|
580 |
+
---
|
581 |
+
|
582 |
+
# lagoon999/Chuxin-Embedding-Q4_K_M-GGUF
|
583 |
+
This model was converted to GGUF format from [`chuxin-llm/Chuxin-Embedding`](https://huggingface.co/chuxin-llm/Chuxin-Embedding) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
584 |
+
Refer to the [original model card](https://huggingface.co/chuxin-llm/Chuxin-Embedding) for more details on the model.
|
585 |
+
|
586 |
+
## Use with llama.cpp
|
587 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
588 |
+
|
589 |
+
```bash
|
590 |
+
brew install llama.cpp
|
591 |
+
|
592 |
+
```
|
593 |
+
Invoke the llama.cpp server or the CLI.
|
594 |
+
|
595 |
+
### CLI:
|
596 |
+
```bash
|
597 |
+
llama-cli --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -p "The meaning to life and the universe is"
|
598 |
+
```
|
599 |
+
|
600 |
+
### Server:
|
601 |
+
```bash
|
602 |
+
llama-server --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -c 2048
|
603 |
+
```
|
604 |
+
|
605 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
606 |
+
|
607 |
+
Step 1: Clone llama.cpp from GitHub.
|
608 |
+
```
|
609 |
+
git clone https://github.com/ggerganov/llama.cpp
|
610 |
+
```
|
611 |
+
|
612 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
613 |
+
```
|
614 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
615 |
+
```
|
616 |
+
|
617 |
+
Step 3: Run inference through the main binary.
|
618 |
+
```
|
619 |
+
./llama-cli --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -p "The meaning to life and the universe is"
|
620 |
+
```
|
621 |
+
or
|
622 |
+
```
|
623 |
+
./llama-server --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -c 2048
|
624 |
+
```
|