lagoon999 commited on
Commit
3f38aec
·
verified ·
1 Parent(s): c245b44

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +624 -0
README.md ADDED
@@ -0,0 +1,624 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ tags:
5
+ - mteb
6
+ - llama-cpp
7
+ - gguf-my-repo
8
+ base_model: chuxin-llm/Chuxin-Embedding
9
+ model-index:
10
+ - name: Chuxin-Embedding
11
+ results:
12
+ - task:
13
+ type: Retrieval
14
+ dataset:
15
+ name: MTEB CmedqaRetrieval (default)
16
+ type: C-MTEB/CmedqaRetrieval
17
+ config: default
18
+ split: dev
19
+ revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
20
+ metrics:
21
+ - type: map_at_1
22
+ value: 33.391999999999996
23
+ - type: map_at_10
24
+ value: 48.715
25
+ - type: map_at_100
26
+ value: 50.381
27
+ - type: map_at_1000
28
+ value: 50.456
29
+ - type: map_at_3
30
+ value: 43.708999999999996
31
+ - type: map_at_5
32
+ value: 46.405
33
+ - type: mrr_at_1
34
+ value: 48.612
35
+ - type: mrr_at_10
36
+ value: 58.67099999999999
37
+ - type: mrr_at_100
38
+ value: 59.38
39
+ - type: mrr_at_1000
40
+ value: 59.396
41
+ - type: mrr_at_3
42
+ value: 55.906
43
+ - type: mrr_at_5
44
+ value: 57.421
45
+ - type: ndcg_at_1
46
+ value: 48.612
47
+ - type: ndcg_at_10
48
+ value: 56.581
49
+ - type: ndcg_at_100
50
+ value: 62.422999999999995
51
+ - type: ndcg_at_1000
52
+ value: 63.476
53
+ - type: ndcg_at_3
54
+ value: 50.271
55
+ - type: ndcg_at_5
56
+ value: 52.79899999999999
57
+ - type: precision_at_1
58
+ value: 48.612
59
+ - type: precision_at_10
60
+ value: 11.995000000000001
61
+ - type: precision_at_100
62
+ value: 1.696
63
+ - type: precision_at_1000
64
+ value: 0.185
65
+ - type: precision_at_3
66
+ value: 27.465
67
+ - type: precision_at_5
68
+ value: 19.675
69
+ - type: recall_at_1
70
+ value: 33.391999999999996
71
+ - type: recall_at_10
72
+ value: 69.87100000000001
73
+ - type: recall_at_100
74
+ value: 93.078
75
+ - type: recall_at_1000
76
+ value: 99.55199999999999
77
+ - type: recall_at_3
78
+ value: 50.939
79
+ - type: recall_at_5
80
+ value: 58.714
81
+ - type: main_score
82
+ value: 56.581
83
+ - task:
84
+ type: Retrieval
85
+ dataset:
86
+ name: MTEB CovidRetrieval (default)
87
+ type: C-MTEB/CovidRetrieval
88
+ config: default
89
+ split: dev
90
+ revision: 1271c7809071a13532e05f25fb53511ffce77117
91
+ metrics:
92
+ - type: map_at_1
93
+ value: 71.918
94
+ - type: map_at_10
95
+ value: 80.609
96
+ - type: map_at_100
97
+ value: 80.796
98
+ - type: map_at_1000
99
+ value: 80.798
100
+ - type: map_at_3
101
+ value: 79.224
102
+ - type: map_at_5
103
+ value: 79.96
104
+ - type: mrr_at_1
105
+ value: 72.076
106
+ - type: mrr_at_10
107
+ value: 80.61399999999999
108
+ - type: mrr_at_100
109
+ value: 80.801
110
+ - type: mrr_at_1000
111
+ value: 80.803
112
+ - type: mrr_at_3
113
+ value: 79.276
114
+ - type: mrr_at_5
115
+ value: 80.025
116
+ - type: ndcg_at_1
117
+ value: 72.076
118
+ - type: ndcg_at_10
119
+ value: 84.286
120
+ - type: ndcg_at_100
121
+ value: 85.14500000000001
122
+ - type: ndcg_at_1000
123
+ value: 85.21
124
+ - type: ndcg_at_3
125
+ value: 81.45400000000001
126
+ - type: ndcg_at_5
127
+ value: 82.781
128
+ - type: precision_at_1
129
+ value: 72.076
130
+ - type: precision_at_10
131
+ value: 9.663
132
+ - type: precision_at_100
133
+ value: 1.005
134
+ - type: precision_at_1000
135
+ value: 0.101
136
+ - type: precision_at_3
137
+ value: 29.398999999999997
138
+ - type: precision_at_5
139
+ value: 18.335
140
+ - type: recall_at_1
141
+ value: 71.918
142
+ - type: recall_at_10
143
+ value: 95.574
144
+ - type: recall_at_100
145
+ value: 99.473
146
+ - type: recall_at_1000
147
+ value: 100.0
148
+ - type: recall_at_3
149
+ value: 87.82900000000001
150
+ - type: recall_at_5
151
+ value: 90.991
152
+ - type: main_score
153
+ value: 84.286
154
+ - task:
155
+ type: Retrieval
156
+ dataset:
157
+ name: MTEB DuRetrieval (default)
158
+ type: C-MTEB/DuRetrieval
159
+ config: default
160
+ split: dev
161
+ revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
162
+ metrics:
163
+ - type: map_at_1
164
+ value: 25.019999999999996
165
+ - type: map_at_10
166
+ value: 77.744
167
+ - type: map_at_100
168
+ value: 80.562
169
+ - type: map_at_1000
170
+ value: 80.60300000000001
171
+ - type: map_at_3
172
+ value: 52.642999999999994
173
+ - type: map_at_5
174
+ value: 67.179
175
+ - type: mrr_at_1
176
+ value: 86.5
177
+ - type: mrr_at_10
178
+ value: 91.024
179
+ - type: mrr_at_100
180
+ value: 91.09
181
+ - type: mrr_at_1000
182
+ value: 91.093
183
+ - type: mrr_at_3
184
+ value: 90.558
185
+ - type: mrr_at_5
186
+ value: 90.913
187
+ - type: ndcg_at_1
188
+ value: 86.5
189
+ - type: ndcg_at_10
190
+ value: 85.651
191
+ - type: ndcg_at_100
192
+ value: 88.504
193
+ - type: ndcg_at_1000
194
+ value: 88.887
195
+ - type: ndcg_at_3
196
+ value: 82.707
197
+ - type: ndcg_at_5
198
+ value: 82.596
199
+ - type: precision_at_1
200
+ value: 86.5
201
+ - type: precision_at_10
202
+ value: 41.595
203
+ - type: precision_at_100
204
+ value: 4.7940000000000005
205
+ - type: precision_at_1000
206
+ value: 0.48900000000000005
207
+ - type: precision_at_3
208
+ value: 74.233
209
+ - type: precision_at_5
210
+ value: 63.68000000000001
211
+ - type: recall_at_1
212
+ value: 25.019999999999996
213
+ - type: recall_at_10
214
+ value: 88.114
215
+ - type: recall_at_100
216
+ value: 97.442
217
+ - type: recall_at_1000
218
+ value: 99.39099999999999
219
+ - type: recall_at_3
220
+ value: 55.397
221
+ - type: recall_at_5
222
+ value: 73.095
223
+ - type: main_score
224
+ value: 85.651
225
+ - task:
226
+ type: Retrieval
227
+ dataset:
228
+ name: MTEB EcomRetrieval (default)
229
+ type: C-MTEB/EcomRetrieval
230
+ config: default
231
+ split: dev
232
+ revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
233
+ metrics:
234
+ - type: map_at_1
235
+ value: 55.60000000000001
236
+ - type: map_at_10
237
+ value: 67.891
238
+ - type: map_at_100
239
+ value: 68.28699999999999
240
+ - type: map_at_1000
241
+ value: 68.28699999999999
242
+ - type: map_at_3
243
+ value: 64.86699999999999
244
+ - type: map_at_5
245
+ value: 66.652
246
+ - type: mrr_at_1
247
+ value: 55.60000000000001
248
+ - type: mrr_at_10
249
+ value: 67.891
250
+ - type: mrr_at_100
251
+ value: 68.28699999999999
252
+ - type: mrr_at_1000
253
+ value: 68.28699999999999
254
+ - type: mrr_at_3
255
+ value: 64.86699999999999
256
+ - type: mrr_at_5
257
+ value: 66.652
258
+ - type: ndcg_at_1
259
+ value: 55.60000000000001
260
+ - type: ndcg_at_10
261
+ value: 74.01100000000001
262
+ - type: ndcg_at_100
263
+ value: 75.602
264
+ - type: ndcg_at_1000
265
+ value: 75.602
266
+ - type: ndcg_at_3
267
+ value: 67.833
268
+ - type: ndcg_at_5
269
+ value: 71.005
270
+ - type: precision_at_1
271
+ value: 55.60000000000001
272
+ - type: precision_at_10
273
+ value: 9.33
274
+ - type: precision_at_100
275
+ value: 1.0
276
+ - type: precision_at_1000
277
+ value: 0.1
278
+ - type: precision_at_3
279
+ value: 25.467000000000002
280
+ - type: precision_at_5
281
+ value: 16.8
282
+ - type: recall_at_1
283
+ value: 55.60000000000001
284
+ - type: recall_at_10
285
+ value: 93.30000000000001
286
+ - type: recall_at_100
287
+ value: 100.0
288
+ - type: recall_at_1000
289
+ value: 100.0
290
+ - type: recall_at_3
291
+ value: 76.4
292
+ - type: recall_at_5
293
+ value: 84.0
294
+ - type: main_score
295
+ value: 74.01100000000001
296
+ - task:
297
+ type: Retrieval
298
+ dataset:
299
+ name: MTEB MMarcoRetrieval (default)
300
+ type: C-MTEB/MMarcoRetrieval
301
+ config: default
302
+ split: dev
303
+ revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
304
+ metrics:
305
+ - type: map_at_1
306
+ value: 66.24799999999999
307
+ - type: map_at_10
308
+ value: 75.356
309
+ - type: map_at_100
310
+ value: 75.653
311
+ - type: map_at_1000
312
+ value: 75.664
313
+ - type: map_at_3
314
+ value: 73.515
315
+ - type: map_at_5
316
+ value: 74.67099999999999
317
+ - type: mrr_at_1
318
+ value: 68.496
319
+ - type: mrr_at_10
320
+ value: 75.91499999999999
321
+ - type: mrr_at_100
322
+ value: 76.17399999999999
323
+ - type: mrr_at_1000
324
+ value: 76.184
325
+ - type: mrr_at_3
326
+ value: 74.315
327
+ - type: mrr_at_5
328
+ value: 75.313
329
+ - type: ndcg_at_1
330
+ value: 68.496
331
+ - type: ndcg_at_10
332
+ value: 79.065
333
+ - type: ndcg_at_100
334
+ value: 80.417
335
+ - type: ndcg_at_1000
336
+ value: 80.72399999999999
337
+ - type: ndcg_at_3
338
+ value: 75.551
339
+ - type: ndcg_at_5
340
+ value: 77.505
341
+ - type: precision_at_1
342
+ value: 68.496
343
+ - type: precision_at_10
344
+ value: 9.563
345
+ - type: precision_at_100
346
+ value: 1.024
347
+ - type: precision_at_1000
348
+ value: 0.105
349
+ - type: precision_at_3
350
+ value: 28.391
351
+ - type: precision_at_5
352
+ value: 18.086
353
+ - type: recall_at_1
354
+ value: 66.24799999999999
355
+ - type: recall_at_10
356
+ value: 89.97
357
+ - type: recall_at_100
358
+ value: 96.13199999999999
359
+ - type: recall_at_1000
360
+ value: 98.551
361
+ - type: recall_at_3
362
+ value: 80.624
363
+ - type: recall_at_5
364
+ value: 85.271
365
+ - type: main_score
366
+ value: 79.065
367
+ - task:
368
+ type: Retrieval
369
+ dataset:
370
+ name: MTEB MedicalRetrieval (default)
371
+ type: C-MTEB/MedicalRetrieval
372
+ config: default
373
+ split: dev
374
+ revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
375
+ metrics:
376
+ - type: map_at_1
377
+ value: 61.8
378
+ - type: map_at_10
379
+ value: 71.101
380
+ - type: map_at_100
381
+ value: 71.576
382
+ - type: map_at_1000
383
+ value: 71.583
384
+ - type: map_at_3
385
+ value: 68.867
386
+ - type: map_at_5
387
+ value: 70.272
388
+ - type: mrr_at_1
389
+ value: 61.9
390
+ - type: mrr_at_10
391
+ value: 71.158
392
+ - type: mrr_at_100
393
+ value: 71.625
394
+ - type: mrr_at_1000
395
+ value: 71.631
396
+ - type: mrr_at_3
397
+ value: 68.917
398
+ - type: mrr_at_5
399
+ value: 70.317
400
+ - type: ndcg_at_1
401
+ value: 61.8
402
+ - type: ndcg_at_10
403
+ value: 75.624
404
+ - type: ndcg_at_100
405
+ value: 77.702
406
+ - type: ndcg_at_1000
407
+ value: 77.836
408
+ - type: ndcg_at_3
409
+ value: 71.114
410
+ - type: ndcg_at_5
411
+ value: 73.636
412
+ - type: precision_at_1
413
+ value: 61.8
414
+ - type: precision_at_10
415
+ value: 8.98
416
+ - type: precision_at_100
417
+ value: 0.9900000000000001
418
+ - type: precision_at_1000
419
+ value: 0.1
420
+ - type: precision_at_3
421
+ value: 25.867
422
+ - type: precision_at_5
423
+ value: 16.74
424
+ - type: recall_at_1
425
+ value: 61.8
426
+ - type: recall_at_10
427
+ value: 89.8
428
+ - type: recall_at_100
429
+ value: 99.0
430
+ - type: recall_at_1000
431
+ value: 100.0
432
+ - type: recall_at_3
433
+ value: 77.60000000000001
434
+ - type: recall_at_5
435
+ value: 83.7
436
+ - type: main_score
437
+ value: 75.624
438
+ - task:
439
+ type: Retrieval
440
+ dataset:
441
+ name: MTEB T2Retrieval (default)
442
+ type: C-MTEB/T2Retrieval
443
+ config: default
444
+ split: dev
445
+ revision: 8731a845f1bf500a4f111cf1070785c793d10e64
446
+ metrics:
447
+ - type: map_at_1
448
+ value: 27.173000000000002
449
+ - type: map_at_10
450
+ value: 76.454
451
+ - type: map_at_100
452
+ value: 80.021
453
+ - type: map_at_1000
454
+ value: 80.092
455
+ - type: map_at_3
456
+ value: 53.876999999999995
457
+ - type: map_at_5
458
+ value: 66.122
459
+ - type: mrr_at_1
460
+ value: 89.519
461
+ - type: mrr_at_10
462
+ value: 92.091
463
+ - type: mrr_at_100
464
+ value: 92.179
465
+ - type: mrr_at_1000
466
+ value: 92.183
467
+ - type: mrr_at_3
468
+ value: 91.655
469
+ - type: mrr_at_5
470
+ value: 91.94
471
+ - type: ndcg_at_1
472
+ value: 89.519
473
+ - type: ndcg_at_10
474
+ value: 84.043
475
+ - type: ndcg_at_100
476
+ value: 87.60900000000001
477
+ - type: ndcg_at_1000
478
+ value: 88.32799999999999
479
+ - type: ndcg_at_3
480
+ value: 85.623
481
+ - type: ndcg_at_5
482
+ value: 84.111
483
+ - type: precision_at_1
484
+ value: 89.519
485
+ - type: precision_at_10
486
+ value: 41.760000000000005
487
+ - type: precision_at_100
488
+ value: 4.982
489
+ - type: precision_at_1000
490
+ value: 0.515
491
+ - type: precision_at_3
492
+ value: 74.944
493
+ - type: precision_at_5
494
+ value: 62.705999999999996
495
+ - type: recall_at_1
496
+ value: 27.173000000000002
497
+ - type: recall_at_10
498
+ value: 82.878
499
+ - type: recall_at_100
500
+ value: 94.527
501
+ - type: recall_at_1000
502
+ value: 98.24199999999999
503
+ - type: recall_at_3
504
+ value: 55.589
505
+ - type: recall_at_5
506
+ value: 69.476
507
+ - type: main_score
508
+ value: 84.043
509
+ - task:
510
+ type: Retrieval
511
+ dataset:
512
+ name: MTEB VideoRetrieval (default)
513
+ type: C-MTEB/VideoRetrieval
514
+ config: default
515
+ split: dev
516
+ revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
517
+ metrics:
518
+ - type: map_at_1
519
+ value: 70.1
520
+ - type: map_at_10
521
+ value: 79.62
522
+ - type: map_at_100
523
+ value: 79.804
524
+ - type: map_at_1000
525
+ value: 79.804
526
+ - type: map_at_3
527
+ value: 77.81700000000001
528
+ - type: map_at_5
529
+ value: 79.037
530
+ - type: mrr_at_1
531
+ value: 70.1
532
+ - type: mrr_at_10
533
+ value: 79.62
534
+ - type: mrr_at_100
535
+ value: 79.804
536
+ - type: mrr_at_1000
537
+ value: 79.804
538
+ - type: mrr_at_3
539
+ value: 77.81700000000001
540
+ - type: mrr_at_5
541
+ value: 79.037
542
+ - type: ndcg_at_1
543
+ value: 70.1
544
+ - type: ndcg_at_10
545
+ value: 83.83500000000001
546
+ - type: ndcg_at_100
547
+ value: 84.584
548
+ - type: ndcg_at_1000
549
+ value: 84.584
550
+ - type: ndcg_at_3
551
+ value: 80.282
552
+ - type: ndcg_at_5
553
+ value: 82.472
554
+ - type: precision_at_1
555
+ value: 70.1
556
+ - type: precision_at_10
557
+ value: 9.68
558
+ - type: precision_at_100
559
+ value: 1.0
560
+ - type: precision_at_1000
561
+ value: 0.1
562
+ - type: precision_at_3
563
+ value: 29.133
564
+ - type: precision_at_5
565
+ value: 18.54
566
+ - type: recall_at_1
567
+ value: 70.1
568
+ - type: recall_at_10
569
+ value: 96.8
570
+ - type: recall_at_100
571
+ value: 100.0
572
+ - type: recall_at_1000
573
+ value: 100.0
574
+ - type: recall_at_3
575
+ value: 87.4
576
+ - type: recall_at_5
577
+ value: 92.7
578
+ - type: main_score
579
+ value: 83.83500000000001
580
+ ---
581
+
582
+ # lagoon999/Chuxin-Embedding-Q4_K_M-GGUF
583
+ This model was converted to GGUF format from [`chuxin-llm/Chuxin-Embedding`](https://huggingface.co/chuxin-llm/Chuxin-Embedding) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
584
+ Refer to the [original model card](https://huggingface.co/chuxin-llm/Chuxin-Embedding) for more details on the model.
585
+
586
+ ## Use with llama.cpp
587
+ Install llama.cpp through brew (works on Mac and Linux)
588
+
589
+ ```bash
590
+ brew install llama.cpp
591
+
592
+ ```
593
+ Invoke the llama.cpp server or the CLI.
594
+
595
+ ### CLI:
596
+ ```bash
597
+ llama-cli --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -p "The meaning to life and the universe is"
598
+ ```
599
+
600
+ ### Server:
601
+ ```bash
602
+ llama-server --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -c 2048
603
+ ```
604
+
605
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
606
+
607
+ Step 1: Clone llama.cpp from GitHub.
608
+ ```
609
+ git clone https://github.com/ggerganov/llama.cpp
610
+ ```
611
+
612
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
613
+ ```
614
+ cd llama.cpp && LLAMA_CURL=1 make
615
+ ```
616
+
617
+ Step 3: Run inference through the main binary.
618
+ ```
619
+ ./llama-cli --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -p "The meaning to life and the universe is"
620
+ ```
621
+ or
622
+ ```
623
+ ./llama-server --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -c 2048
624
+ ```