lagoon999's picture
Upload README.md with huggingface_hub
3f38aec verified
|
raw
history blame
15.1 kB
metadata
language:
  - zh
tags:
  - mteb
  - llama-cpp
  - gguf-my-repo
base_model: chuxin-llm/Chuxin-Embedding
model-index:
  - name: Chuxin-Embedding
    results:
      - task:
          type: Retrieval
        dataset:
          name: MTEB CmedqaRetrieval (default)
          type: C-MTEB/CmedqaRetrieval
          config: default
          split: dev
          revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
        metrics:
          - type: map_at_1
            value: 33.391999999999996
          - type: map_at_10
            value: 48.715
          - type: map_at_100
            value: 50.381
          - type: map_at_1000
            value: 50.456
          - type: map_at_3
            value: 43.708999999999996
          - type: map_at_5
            value: 46.405
          - type: mrr_at_1
            value: 48.612
          - type: mrr_at_10
            value: 58.67099999999999
          - type: mrr_at_100
            value: 59.38
          - type: mrr_at_1000
            value: 59.396
          - type: mrr_at_3
            value: 55.906
          - type: mrr_at_5
            value: 57.421
          - type: ndcg_at_1
            value: 48.612
          - type: ndcg_at_10
            value: 56.581
          - type: ndcg_at_100
            value: 62.422999999999995
          - type: ndcg_at_1000
            value: 63.476
          - type: ndcg_at_3
            value: 50.271
          - type: ndcg_at_5
            value: 52.79899999999999
          - type: precision_at_1
            value: 48.612
          - type: precision_at_10
            value: 11.995000000000001
          - type: precision_at_100
            value: 1.696
          - type: precision_at_1000
            value: 0.185
          - type: precision_at_3
            value: 27.465
          - type: precision_at_5
            value: 19.675
          - type: recall_at_1
            value: 33.391999999999996
          - type: recall_at_10
            value: 69.87100000000001
          - type: recall_at_100
            value: 93.078
          - type: recall_at_1000
            value: 99.55199999999999
          - type: recall_at_3
            value: 50.939
          - type: recall_at_5
            value: 58.714
          - type: main_score
            value: 56.581
      - task:
          type: Retrieval
        dataset:
          name: MTEB CovidRetrieval (default)
          type: C-MTEB/CovidRetrieval
          config: default
          split: dev
          revision: 1271c7809071a13532e05f25fb53511ffce77117
        metrics:
          - type: map_at_1
            value: 71.918
          - type: map_at_10
            value: 80.609
          - type: map_at_100
            value: 80.796
          - type: map_at_1000
            value: 80.798
          - type: map_at_3
            value: 79.224
          - type: map_at_5
            value: 79.96
          - type: mrr_at_1
            value: 72.076
          - type: mrr_at_10
            value: 80.61399999999999
          - type: mrr_at_100
            value: 80.801
          - type: mrr_at_1000
            value: 80.803
          - type: mrr_at_3
            value: 79.276
          - type: mrr_at_5
            value: 80.025
          - type: ndcg_at_1
            value: 72.076
          - type: ndcg_at_10
            value: 84.286
          - type: ndcg_at_100
            value: 85.14500000000001
          - type: ndcg_at_1000
            value: 85.21
          - type: ndcg_at_3
            value: 81.45400000000001
          - type: ndcg_at_5
            value: 82.781
          - type: precision_at_1
            value: 72.076
          - type: precision_at_10
            value: 9.663
          - type: precision_at_100
            value: 1.005
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 29.398999999999997
          - type: precision_at_5
            value: 18.335
          - type: recall_at_1
            value: 71.918
          - type: recall_at_10
            value: 95.574
          - type: recall_at_100
            value: 99.473
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 87.82900000000001
          - type: recall_at_5
            value: 90.991
          - type: main_score
            value: 84.286
      - task:
          type: Retrieval
        dataset:
          name: MTEB DuRetrieval (default)
          type: C-MTEB/DuRetrieval
          config: default
          split: dev
          revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
        metrics:
          - type: map_at_1
            value: 25.019999999999996
          - type: map_at_10
            value: 77.744
          - type: map_at_100
            value: 80.562
          - type: map_at_1000
            value: 80.60300000000001
          - type: map_at_3
            value: 52.642999999999994
          - type: map_at_5
            value: 67.179
          - type: mrr_at_1
            value: 86.5
          - type: mrr_at_10
            value: 91.024
          - type: mrr_at_100
            value: 91.09
          - type: mrr_at_1000
            value: 91.093
          - type: mrr_at_3
            value: 90.558
          - type: mrr_at_5
            value: 90.913
          - type: ndcg_at_1
            value: 86.5
          - type: ndcg_at_10
            value: 85.651
          - type: ndcg_at_100
            value: 88.504
          - type: ndcg_at_1000
            value: 88.887
          - type: ndcg_at_3
            value: 82.707
          - type: ndcg_at_5
            value: 82.596
          - type: precision_at_1
            value: 86.5
          - type: precision_at_10
            value: 41.595
          - type: precision_at_100
            value: 4.7940000000000005
          - type: precision_at_1000
            value: 0.48900000000000005
          - type: precision_at_3
            value: 74.233
          - type: precision_at_5
            value: 63.68000000000001
          - type: recall_at_1
            value: 25.019999999999996
          - type: recall_at_10
            value: 88.114
          - type: recall_at_100
            value: 97.442
          - type: recall_at_1000
            value: 99.39099999999999
          - type: recall_at_3
            value: 55.397
          - type: recall_at_5
            value: 73.095
          - type: main_score
            value: 85.651
      - task:
          type: Retrieval
        dataset:
          name: MTEB EcomRetrieval (default)
          type: C-MTEB/EcomRetrieval
          config: default
          split: dev
          revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
        metrics:
          - type: map_at_1
            value: 55.60000000000001
          - type: map_at_10
            value: 67.891
          - type: map_at_100
            value: 68.28699999999999
          - type: map_at_1000
            value: 68.28699999999999
          - type: map_at_3
            value: 64.86699999999999
          - type: map_at_5
            value: 66.652
          - type: mrr_at_1
            value: 55.60000000000001
          - type: mrr_at_10
            value: 67.891
          - type: mrr_at_100
            value: 68.28699999999999
          - type: mrr_at_1000
            value: 68.28699999999999
          - type: mrr_at_3
            value: 64.86699999999999
          - type: mrr_at_5
            value: 66.652
          - type: ndcg_at_1
            value: 55.60000000000001
          - type: ndcg_at_10
            value: 74.01100000000001
          - type: ndcg_at_100
            value: 75.602
          - type: ndcg_at_1000
            value: 75.602
          - type: ndcg_at_3
            value: 67.833
          - type: ndcg_at_5
            value: 71.005
          - type: precision_at_1
            value: 55.60000000000001
          - type: precision_at_10
            value: 9.33
          - type: precision_at_100
            value: 1
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 25.467000000000002
          - type: precision_at_5
            value: 16.8
          - type: recall_at_1
            value: 55.60000000000001
          - type: recall_at_10
            value: 93.30000000000001
          - type: recall_at_100
            value: 100
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 76.4
          - type: recall_at_5
            value: 84
          - type: main_score
            value: 74.01100000000001
      - task:
          type: Retrieval
        dataset:
          name: MTEB MMarcoRetrieval (default)
          type: C-MTEB/MMarcoRetrieval
          config: default
          split: dev
          revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
        metrics:
          - type: map_at_1
            value: 66.24799999999999
          - type: map_at_10
            value: 75.356
          - type: map_at_100
            value: 75.653
          - type: map_at_1000
            value: 75.664
          - type: map_at_3
            value: 73.515
          - type: map_at_5
            value: 74.67099999999999
          - type: mrr_at_1
            value: 68.496
          - type: mrr_at_10
            value: 75.91499999999999
          - type: mrr_at_100
            value: 76.17399999999999
          - type: mrr_at_1000
            value: 76.184
          - type: mrr_at_3
            value: 74.315
          - type: mrr_at_5
            value: 75.313
          - type: ndcg_at_1
            value: 68.496
          - type: ndcg_at_10
            value: 79.065
          - type: ndcg_at_100
            value: 80.417
          - type: ndcg_at_1000
            value: 80.72399999999999
          - type: ndcg_at_3
            value: 75.551
          - type: ndcg_at_5
            value: 77.505
          - type: precision_at_1
            value: 68.496
          - type: precision_at_10
            value: 9.563
          - type: precision_at_100
            value: 1.024
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 28.391
          - type: precision_at_5
            value: 18.086
          - type: recall_at_1
            value: 66.24799999999999
          - type: recall_at_10
            value: 89.97
          - type: recall_at_100
            value: 96.13199999999999
          - type: recall_at_1000
            value: 98.551
          - type: recall_at_3
            value: 80.624
          - type: recall_at_5
            value: 85.271
          - type: main_score
            value: 79.065
      - task:
          type: Retrieval
        dataset:
          name: MTEB MedicalRetrieval (default)
          type: C-MTEB/MedicalRetrieval
          config: default
          split: dev
          revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
        metrics:
          - type: map_at_1
            value: 61.8
          - type: map_at_10
            value: 71.101
          - type: map_at_100
            value: 71.576
          - type: map_at_1000
            value: 71.583
          - type: map_at_3
            value: 68.867
          - type: map_at_5
            value: 70.272
          - type: mrr_at_1
            value: 61.9
          - type: mrr_at_10
            value: 71.158
          - type: mrr_at_100
            value: 71.625
          - type: mrr_at_1000
            value: 71.631
          - type: mrr_at_3
            value: 68.917
          - type: mrr_at_5
            value: 70.317
          - type: ndcg_at_1
            value: 61.8
          - type: ndcg_at_10
            value: 75.624
          - type: ndcg_at_100
            value: 77.702
          - type: ndcg_at_1000
            value: 77.836
          - type: ndcg_at_3
            value: 71.114
          - type: ndcg_at_5
            value: 73.636
          - type: precision_at_1
            value: 61.8
          - type: precision_at_10
            value: 8.98
          - type: precision_at_100
            value: 0.9900000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 25.867
          - type: precision_at_5
            value: 16.74
          - type: recall_at_1
            value: 61.8
          - type: recall_at_10
            value: 89.8
          - type: recall_at_100
            value: 99
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 77.60000000000001
          - type: recall_at_5
            value: 83.7
          - type: main_score
            value: 75.624
      - task:
          type: Retrieval
        dataset:
          name: MTEB T2Retrieval (default)
          type: C-MTEB/T2Retrieval
          config: default
          split: dev
          revision: 8731a845f1bf500a4f111cf1070785c793d10e64
        metrics:
          - type: map_at_1
            value: 27.173000000000002
          - type: map_at_10
            value: 76.454
          - type: map_at_100
            value: 80.021
          - type: map_at_1000
            value: 80.092
          - type: map_at_3
            value: 53.876999999999995
          - type: map_at_5
            value: 66.122
          - type: mrr_at_1
            value: 89.519
          - type: mrr_at_10
            value: 92.091
          - type: mrr_at_100
            value: 92.179
          - type: mrr_at_1000
            value: 92.183
          - type: mrr_at_3
            value: 91.655
          - type: mrr_at_5
            value: 91.94
          - type: ndcg_at_1
            value: 89.519
          - type: ndcg_at_10
            value: 84.043
          - type: ndcg_at_100
            value: 87.60900000000001
          - type: ndcg_at_1000
            value: 88.32799999999999
          - type: ndcg_at_3
            value: 85.623
          - type: ndcg_at_5
            value: 84.111
          - type: precision_at_1
            value: 89.519
          - type: precision_at_10
            value: 41.760000000000005
          - type: precision_at_100
            value: 4.982
          - type: precision_at_1000
            value: 0.515
          - type: precision_at_3
            value: 74.944
          - type: precision_at_5
            value: 62.705999999999996
          - type: recall_at_1
            value: 27.173000000000002
          - type: recall_at_10
            value: 82.878
          - type: recall_at_100
            value: 94.527
          - type: recall_at_1000
            value: 98.24199999999999
          - type: recall_at_3
            value: 55.589
          - type: recall_at_5
            value: 69.476
          - type: main_score
            value: 84.043
      - task:
          type: Retrieval
        dataset:
          name: MTEB VideoRetrieval (default)
          type: C-MTEB/VideoRetrieval
          config: default
          split: dev
          revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
        metrics:
          - type: map_at_1
            value: 70.1
          - type: map_at_10
            value: 79.62
          - type: map_at_100
            value: 79.804
          - type: map_at_1000
            value: 79.804
          - type: map_at_3
            value: 77.81700000000001
          - type: map_at_5
            value: 79.037
          - type: mrr_at_1
            value: 70.1
          - type: mrr_at_10
            value: 79.62
          - type: mrr_at_100
            value: 79.804
          - type: mrr_at_1000
            value: 79.804
          - type: mrr_at_3
            value: 77.81700000000001
          - type: mrr_at_5
            value: 79.037
          - type: ndcg_at_1
            value: 70.1
          - type: ndcg_at_10
            value: 83.83500000000001
          - type: ndcg_at_100
            value: 84.584
          - type: ndcg_at_1000
            value: 84.584
          - type: ndcg_at_3
            value: 80.282
          - type: ndcg_at_5
            value: 82.472
          - type: precision_at_1
            value: 70.1
          - type: precision_at_10
            value: 9.68
          - type: precision_at_100
            value: 1
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 29.133
          - type: precision_at_5
            value: 18.54
          - type: recall_at_1
            value: 70.1
          - type: recall_at_10
            value: 96.8
          - type: recall_at_100
            value: 100
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 87.4
          - type: recall_at_5
            value: 92.7
          - type: main_score
            value: 83.83500000000001

lagoon999/Chuxin-Embedding-Q4_K_M-GGUF

This model was converted to GGUF format from chuxin-llm/Chuxin-Embedding using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo lagoon999/Chuxin-Embedding-Q4_K_M-GGUF --hf-file chuxin-embedding-q4_k_m.gguf -c 2048