dataset_infos_midm / README.md
kjh01's picture
Udate README.md
f197e94
|
raw
history blame
3.1 kB
metadata
license: cc-by-nc-4.0
base_model: KT-AI/midm-bitext-S-7B-inst-v1
tags:
  - generated_from_trainer
model-index:
  - name: dataset_infos_midm
    results: []

dataset_infos_midm

This model is a fine-tuned version of KT-AI/midm-bitext-S-7B-inst-v1 on an unknown dataset.

Model description

Midm은 KTκ°€ κ°œλ°œν•œ μ‚¬μ „ν•™μŠ΅ ν•œκ΅­μ–΄-μ˜μ–΄ μ–Έμ–΄λͺ¨λΈ μž…λ‹ˆλ‹€. λ¬Έμžμ—΄μ„ μž…λ ₯으둜 ν•˜λ©°, λ¬Έμžμ—΄μ„ μƒμ„±ν•©λ‹ˆλ‹€. ν•΄λ‹Ή λͺ¨λΈ(KT-AI/midm-bitext-S-7B-inst-v1)을 베이슀 λͺ¨λΈλ‘œ ν•˜μ—¬ λ―Έμ„ΈνŠœλ‹μ„ μ§„ν–‰ν•˜μ˜€μŠ΅λ‹ˆλ‹€.

Midm is a pre-trained Korean-English language model developed by KT. It takes text as input and creates text. We fine-tuned the model based on KT-AI/midm-bitext-S-7B-inst-v1.

Intended uses & limitations

nsmc λ°μ΄ν„°μ…‹μ˜ μ‚¬μš©μžκ°€ μž…λ ₯ν•œ 리뷰 λ¬Έμž₯을 λΆ„λ₯˜ν•˜λŠ” μ—μ΄μ „νŠΈμ΄λ‹€. μ‚¬μš©μž 리뷰 λ¬Έμž₯μœΌλ‘œλΆ€ν„° '긍정' λ˜λŠ” 'λΆ€μ •'을 νŒλ‹¨ν•©λ‹ˆλ‹€.

This is an agent that classifies user-input review sentences from NSMC dataset. It determines whether the user review sentences are 'positive' or 'negative'.

Training and test data

Training 및 test λ°μ΄ν„°λŠ” nsmc 데이터 μ…‹μ—μ„œ λ‘œλ”©ν•΄ μ‚¬μš©ν•©λ‹ˆλ‹€. (elvaluation λ°μ΄ν„°λŠ” μ‚¬μš©ν•˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€.)

We load and use training and test data from the NSMC dataset. (We do not use an evaluation data.)

Training procedure

μ‚¬μš©μžμ˜ μ˜ν™” 리뷰 λ¬Έμž₯을 μž…λ ₯으둜 λ°›μ•„ λ¬Έμž₯을 '긍정(1)' λ˜λŠ” 'λΆ€μ •(0)'으둜 λΆ„λ₯˜ν•©λ‹ˆλ‹€.

Accepts movie review sentences from the user as input and classifies the sentences as 'Positive (1)' or 'Negative (0)'.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • training_steps: 300
  • mixed_precision_training: Native AMP

Training results

  • The following are the results considering incorrectly generated words(e.g., μ •, ' ').

    • Binary Confusion Matrix

      TP TN
      PP 443 49
      PN 57 451
    • Accuracy: 0.894

  • The following are the results without considering incorrectly generated words as wrong(e.g., μ •, ' ').

    • Binary Confusion Matrix

      TP TN
      PP 443 38
      PN 44 451
    • Accuracy: 0.916

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0