license: cc-by-nc-4.0
base_model: KT-AI/midm-bitext-S-7B-inst-v1
tags:
- generated_from_trainer
model-index:
- name: dataset_infos_midm
results: []
dataset_infos_midm
This model is a fine-tuned version of KT-AI/midm-bitext-S-7B-inst-v1 on an unknown dataset.
Model description
Midmμ KTκ° κ°λ°ν μ¬μ νμ΅ νκ΅μ΄-μμ΄ μΈμ΄λͺ¨λΈ μ λλ€. λ¬Έμμ΄μ μ λ ₯μΌλ‘ νλ©°, λ¬Έμμ΄μ μμ±ν©λλ€. ν΄λΉ λͺ¨λΈ(KT-AI/midm-bitext-S-7B-inst-v1)μ λ² μ΄μ€ λͺ¨λΈλ‘ νμ¬ λ―ΈμΈνλμ μ§ννμμ΅λλ€.
Midm is a pre-trained Korean-English language model developed by KT. It takes text as input and creates text. We fine-tuned the model based on KT-AI/midm-bitext-S-7B-inst-v1.
Intended uses & limitations
nsmc λ°μ΄ν°μ μ μ¬μ©μκ° μ λ ₯ν 리뷰 λ¬Έμ₯μ λΆλ₯νλ μμ΄μ νΈμ΄λ€. μ¬μ©μ 리뷰 λ¬Έμ₯μΌλ‘λΆν° 'κΈμ ' λλ 'λΆμ 'μ νλ¨ν©λλ€.
This is an agent that classifies user-input review sentences from NSMC dataset. It determines whether the user review sentences are 'positive' or 'negative'.
Training and test data
Training λ° test λ°μ΄ν°λ nsmc λ°μ΄ν° μ μμ λ‘λ©ν΄ μ¬μ©ν©λλ€. (elvaluation λ°μ΄ν°λ μ¬μ©νμ§ μμ΅λλ€.)
We load and use training and test data from the NSMC dataset. (We do not use an evaluation data.)
Training procedure
μ¬μ©μμ μν 리뷰 λ¬Έμ₯μ μ λ ₯μΌλ‘ λ°μ λ¬Έμ₯μ 'κΈμ (1)' λλ 'λΆμ (0)'μΌλ‘ λΆλ₯ν©λλ€.
Accepts movie review sentences from the user as input and classifies the sentences as 'Positive (1)' or 'Negative (0)'.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 300
- mixed_precision_training: Native AMP
Training results
The following are the results considering incorrectly generated words(e.g., μ , ' ').
Binary Confusion Matrix
TP TN PP 443 49 PN 57 451 Accuracy: 0.894
The following are the results without considering incorrectly generated words as wrong(e.g., μ , ' ').
Binary Confusion Matrix
TP TN PP 443 38 PN 44 451 Accuracy: 0.916
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0