File size: 3,096 Bytes
e355d23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee396cd
 
 
 
 
e355d23
 
 
ee396cd
 
 
 
 
 
e355d23
ee396cd
e355d23
ee396cd
e355d23
 
 
ee396cd
f197e94
ee396cd
 
e355d23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee396cd
 
 
4bd0d9f
ee396cd
 
 
 
 
 
 
 
4bd0d9f
ee396cd
 
 
 
e355d23
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: cc-by-nc-4.0
base_model: KT-AI/midm-bitext-S-7B-inst-v1
tags:
- generated_from_trainer
model-index:
- name: dataset_infos_midm
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dataset_infos_midm

This model is a fine-tuned version of [KT-AI/midm-bitext-S-7B-inst-v1](https://huggingface.co./KT-AI/midm-bitext-S-7B-inst-v1) on an unknown dataset.

## Model description

Midm์€ KT๊ฐ€ ๊ฐœ๋ฐœํ•œ ์‚ฌ์ „ํ•™์Šต ํ•œ๊ตญ์–ด-์˜์–ด ์–ธ์–ด๋ชจ๋ธ ์ž…๋‹ˆ๋‹ค. ๋ฌธ์ž์—ด์„ ์ž…๋ ฅ์œผ๋กœ ํ•˜๋ฉฐ, ๋ฌธ์ž์—ด์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
ํ•ด๋‹น ๋ชจ๋ธ(KT-AI/midm-bitext-S-7B-inst-v1)์„ ๋ฒ ์ด์Šค ๋ชจ๋ธ๋กœ ํ•˜์—ฌ ๋ฏธ์„ธํŠœ๋‹์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. 

Midm is a pre-trained Korean-English language model developed by KT. It takes text as input and creates text.
We fine-tuned the model based on KT-AI/midm-bitext-S-7B-inst-v1.

## Intended uses & limitations

nsmc ๋ฐ์ดํ„ฐ์…‹์˜ ์‚ฌ์šฉ์ž๊ฐ€ ์ž…๋ ฅํ•œ ๋ฆฌ๋ทฐ ๋ฌธ์žฅ์„ ๋ถ„๋ฅ˜ํ•˜๋Š” ์—์ด์ „ํŠธ์ด๋‹ค. ์‚ฌ์šฉ์ž ๋ฆฌ๋ทฐ ๋ฌธ์žฅ์œผ๋กœ๋ถ€ํ„ฐ '๊ธ์ •' ๋˜๋Š” '๋ถ€์ •'์„ ํŒ๋‹จํ•ฉ๋‹ˆ๋‹ค.

This is an agent that classifies user-input review sentences from NSMC dataset. 
It determines whether the user review sentences are 'positive' or 'negative'.

## Training and test data

Training ๋ฐ test ๋ฐ์ดํ„ฐ๋Š” nsmc ๋ฐ์ดํ„ฐ ์…‹์—์„œ ๋กœ๋”ฉํ•ด ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. (elvaluation ๋ฐ์ดํ„ฐ๋Š” ์‚ฌ์šฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.)

We load and use training and test data from the NSMC dataset. (We do not use an evaluation data.)

## Training procedure

์‚ฌ์šฉ์ž์˜ ์˜ํ™” ๋ฆฌ๋ทฐ ๋ฌธ์žฅ์„ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„ ๋ฌธ์žฅ์„ '๊ธ์ •(1)' ๋˜๋Š” '๋ถ€์ •(0)'์œผ๋กœ ๋ถ„๋ฅ˜ํ•ฉ๋‹ˆ๋‹ค. 

Accepts movie review sentences from the user as input and classifies the sentences as 'Positive (1)' or 'Negative (0)'.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 300
- mixed_precision_training: Native AMP

### Training results

- The following are the results considering incorrectly generated words(e.g., **์ •**, **' '**).
  - **Binary Confusion Matrix**
    |          | TP | TN |
    |:-----|:------------:|:------------:|
    | PP |        443         |         49         |
    | PN |         57         |        451         |

  - **Accuracy**: 0.894

- The following are the results without considering incorrectly generated words as wrong(e.g., **์ •**, **' '**).
  - **Binary Confusion Matrix**
    |          | TP | TN |
    |:-----|:------------:|:------------:|
    | PP |        443         |         38         |
    | PN |         44         |        451         |
     
  - **Accuracy**: 0.916

### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0