File size: 3,096 Bytes
e355d23 ee396cd e355d23 ee396cd e355d23 ee396cd e355d23 ee396cd e355d23 ee396cd f197e94 ee396cd e355d23 ee396cd 4bd0d9f ee396cd 4bd0d9f ee396cd e355d23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: cc-by-nc-4.0
base_model: KT-AI/midm-bitext-S-7B-inst-v1
tags:
- generated_from_trainer
model-index:
- name: dataset_infos_midm
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dataset_infos_midm
This model is a fine-tuned version of [KT-AI/midm-bitext-S-7B-inst-v1](https://huggingface.co./KT-AI/midm-bitext-S-7B-inst-v1) on an unknown dataset.
## Model description
Midm์ KT๊ฐ ๊ฐ๋ฐํ ์ฌ์ ํ์ต ํ๊ตญ์ด-์์ด ์ธ์ด๋ชจ๋ธ ์
๋๋ค. ๋ฌธ์์ด์ ์
๋ ฅ์ผ๋ก ํ๋ฉฐ, ๋ฌธ์์ด์ ์์ฑํฉ๋๋ค.
ํด๋น ๋ชจ๋ธ(KT-AI/midm-bitext-S-7B-inst-v1)์ ๋ฒ ์ด์ค ๋ชจ๋ธ๋ก ํ์ฌ ๋ฏธ์ธํ๋์ ์งํํ์์ต๋๋ค.
Midm is a pre-trained Korean-English language model developed by KT. It takes text as input and creates text.
We fine-tuned the model based on KT-AI/midm-bitext-S-7B-inst-v1.
## Intended uses & limitations
nsmc ๋ฐ์ดํฐ์
์ ์ฌ์ฉ์๊ฐ ์
๋ ฅํ ๋ฆฌ๋ทฐ ๋ฌธ์ฅ์ ๋ถ๋ฅํ๋ ์์ด์ ํธ์ด๋ค. ์ฌ์ฉ์ ๋ฆฌ๋ทฐ ๋ฌธ์ฅ์ผ๋ก๋ถํฐ '๊ธ์ ' ๋๋ '๋ถ์ '์ ํ๋จํฉ๋๋ค.
This is an agent that classifies user-input review sentences from NSMC dataset.
It determines whether the user review sentences are 'positive' or 'negative'.
## Training and test data
Training ๋ฐ test ๋ฐ์ดํฐ๋ nsmc ๋ฐ์ดํฐ ์
์์ ๋ก๋ฉํด ์ฌ์ฉํฉ๋๋ค. (elvaluation ๋ฐ์ดํฐ๋ ์ฌ์ฉํ์ง ์์ต๋๋ค.)
We load and use training and test data from the NSMC dataset. (We do not use an evaluation data.)
## Training procedure
์ฌ์ฉ์์ ์ํ ๋ฆฌ๋ทฐ ๋ฌธ์ฅ์ ์
๋ ฅ์ผ๋ก ๋ฐ์ ๋ฌธ์ฅ์ '๊ธ์ (1)' ๋๋ '๋ถ์ (0)'์ผ๋ก ๋ถ๋ฅํฉ๋๋ค.
Accepts movie review sentences from the user as input and classifies the sentences as 'Positive (1)' or 'Negative (0)'.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 300
- mixed_precision_training: Native AMP
### Training results
- The following are the results considering incorrectly generated words(e.g., **์ **, **' '**).
- **Binary Confusion Matrix**
| | TP | TN |
|:-----|:------------:|:------------:|
| PP | 443 | 49 |
| PN | 57 | 451 |
- **Accuracy**: 0.894
- The following are the results without considering incorrectly generated words as wrong(e.g., **์ **, **' '**).
- **Binary Confusion Matrix**
| | TP | TN |
|:-----|:------------:|:------------:|
| PP | 443 | 38 |
| PN | 44 | 451 |
- **Accuracy**: 0.916
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|