Update README.md
Browse files
README.md
CHANGED
@@ -17,18 +17,30 @@ This model is a fine-tuned version of [KT-AI/midm-bitext-S-7B-inst-v1](https://h
|
|
17 |
|
18 |
## Model description
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
|
22 |
## Intended uses & limitations
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
29 |
|
30 |
## Training procedure
|
31 |
|
|
|
|
|
|
|
32 |
### Training hyperparameters
|
33 |
|
34 |
The following hyperparameters were used during training:
|
@@ -46,7 +58,23 @@ The following hyperparameters were used during training:
|
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
### Framework versions
|
52 |
|
|
|
17 |
|
18 |
## Model description
|
19 |
|
20 |
+
Midmμ KTκ° κ°λ°ν μ¬μ νμ΅ νκ΅μ΄-μμ΄ μΈμ΄λͺ¨λΈ μ
λλ€. λ¬Έμμ΄μ μ
λ ₯μΌλ‘ νλ©°, λ¬Έμμ΄μ μμ±ν©λλ€.
|
21 |
+
ν΄λΉ λͺ¨λΈ(KT-AI/midm-bitext-S-7B-inst-v1)μ λ² μ΄μ€ λͺ¨λΈλ‘ νμ¬ λ―ΈμΈνλμ μ§ννμμ΅λλ€.
|
22 |
+
|
23 |
+
Midm is a pre-trained Korean-English language model developed by KT. It takes text as input and creates text.
|
24 |
+
We fine-tuned the model based on KT-AI/midm-bitext-S-7B-inst-v1.
|
25 |
|
26 |
## Intended uses & limitations
|
27 |
|
28 |
+
nsmc λ°μ΄ν°μ
μ μ¬μ©μκ° μ
λ ₯ν 리뷰 λ¬Έμ₯μ λΆλ₯νλ μμ΄μ νΈμ΄λ€. μ¬μ©μ 리뷰 λ¬Έμ₯μΌλ‘λΆν° 'κΈμ ' λλ 'λΆμ 'μ νλ¨ν©λλ€.
|
29 |
+
|
30 |
+
This is an agent that classifies user-input review sentences from NSMC dataset.
|
31 |
+
It determines whether the user review sentences are 'positive' or 'negative'.
|
32 |
+
|
33 |
+
## Training and test data
|
34 |
|
35 |
+
Training λ° test λ°μ΄ν°λ nsmc λ°μ΄ν° μ
μμ λ‘λ©ν΄ μ¬μ©ν©λλ€. (elvaluation λ°μ΄ν°λ μ¬μ©νμ§ μμ΅λλ€.)
|
36 |
|
37 |
+
We load and use training and test data from the NSMC dataset. (We do not use an evaluation data.)
|
38 |
|
39 |
## Training procedure
|
40 |
|
41 |
+
μ¬μ©μμ μν 리뷰 λ¬Έμ₯μ μ
λ ₯μΌλ‘ λ°μ λ¬Έμ₯μ 'κΈμ (1)' λλ 'λΆμ (0)'μΌλ‘ λΆλ₯ν©λλ€.
|
42 |
+
Accepts movie review sentences from the user as input and classifies the sentences as 'Positive (1)' or 'Negative (0)'.
|
43 |
+
|
44 |
### Training hyperparameters
|
45 |
|
46 |
The following hyperparameters were used during training:
|
|
|
58 |
|
59 |
### Training results
|
60 |
|
61 |
+
- The following are the results considering incorrectly generated words(e.g., **μ **, **' '**).
|
62 |
+
- **Binary Confusion Matrix**
|
63 |
+
| | TP | TN |
|
64 |
+
|----------|--------------------|--------------------|
|
65 |
+
| PP | 443 | 49 |
|
66 |
+
| PN | 57 | 451 |
|
67 |
+
|
68 |
+
- **Accuracy**: 0.894
|
69 |
+
|
70 |
+
- The following are the results without considering incorrectly generated words as wrong(e.g., **μ **, **' '**).
|
71 |
+
- **Binary Confusion Matrix**
|
72 |
+
| | TP | TN |
|
73 |
+
|----------|--------------------|--------------------|
|
74 |
+
| PP | 443 | 38 |
|
75 |
+
| PN | 44 | 451 |
|
76 |
+
|
77 |
+
- **Accuracy**: 0.916
|
78 |
|
79 |
### Framework versions
|
80 |
|