kjh01's picture
Udate README.md
3e2b144
---
base_model: meta-llama/Llama-2-7b-chat-hf
tags:
- generated_from_trainer
model-index:
- name: dataset_infos_llama_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dataset_infos_llama_2
This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co./meta-llama/Llama-2-7b-chat-hf) on an unknown dataset.
## Model description
Llama-2-7b-chat-hf은 metaμ—μ„œ κ°œλ°œν•œ μ‚¬μ „ν•™μŠ΅ ν…μŠ€νŠΈ 생성 μ–Έμ–΄λͺ¨λΈ μž…λ‹ˆλ‹€. λ¬Έμžμ—΄μ„ μž…λ ₯으둜 ν•˜λ©°, λ¬Έμžμ—΄μ„ μƒμ„±ν•©λ‹ˆλ‹€.
ν•΄λ‹Ή λͺ¨λΈ(meta-llama/Llama-2-7b-chat-hf)을 베이슀 λͺ¨λΈλ‘œ ν•˜μ—¬ λ―Έμ„ΈνŠœλ‹μ„ μ§„ν–‰ν•˜μ˜€μŠ΅λ‹ˆλ‹€.
'Llama-2-7b-chat-hf' is a pre-trained text generation language model developed by Meta. It takes a string as input and generates text.
We fine-tuned this model based on it(meta-llama/Llama-2-7b-chat-hf).
## Intended uses & limitations
nsmc λ°μ΄ν„°μ…‹μ˜ μ‚¬μš©μžκ°€ μž…λ ₯ν•œ 리뷰 λ¬Έμž₯을 λΆ„λ₯˜ν•˜λŠ” μ—μ΄μ „νŠΈμž…λ‹ˆλ‹€. μ‚¬μš©μž 리뷰 λ¬Έμž₯μœΌλ‘œλΆ€ν„° '긍정' λ˜λŠ” 'λΆ€μ •'을 νŒλ‹¨ν•©λ‹ˆλ‹€.
This agent classifies user-input review sentences from NSMC dataset.
It determines whether the user review is 'positive' or 'negative' based on the input review sentence.
## Training and test data
Training 및 test λ°μ΄ν„°λŠ” nsmc 데이터 μ…‹μ—μ„œ λ‘œλ”©ν•΄ μ‚¬μš©ν•©λ‹ˆλ‹€. (elvaluation λ°μ΄ν„°λŠ” μ‚¬μš©ν•˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€.)
We load and use training and test data from the NSMC dataset. (We do not use an evaluation data.)
## Training procedure
μ‚¬μš©μžμ˜ μ˜ν™” 리뷰 λ¬Έμž₯을 μž…λ ₯으둜 λ°›μ•„ λ¬Έμž₯을 '긍정(1)' λ˜λŠ” 'λΆ€μ •(0)'으둜 λΆ„λ₯˜ν•©λ‹ˆλ‹€.
Accepts movie review sentences from the user as input and classifies the sentences as 'Positive (1)' or 'Negative (0)'.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 900
- mixed_precision_training: Native AMP
### Training results
- **Binary Confusion Matrix**
| | TP | TN |
|:-----|:------------:|:------------:|
| PP | 425 | 67 |
| PN | 66 | 442 |
- **Accuracy**: 0.894
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0