File size: 2,671 Bytes
1213974 3e2b144 1213974 3e2b144 1213974 3e2b144 1213974 3e2b144 1213974 3e2b144 1213974 3e2b144 1213974 3e2b144 1213974 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
base_model: meta-llama/Llama-2-7b-chat-hf
tags:
- generated_from_trainer
model-index:
- name: dataset_infos_llama_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dataset_infos_llama_2
This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co./meta-llama/Llama-2-7b-chat-hf) on an unknown dataset.
## Model description
Llama-2-7b-chat-hfμ metaμμ κ°λ°ν μ¬μ νμ΅ ν
μ€νΈ μμ± μΈμ΄λͺ¨λΈ μ
λλ€. λ¬Έμμ΄μ μ
λ ₯μΌλ‘ νλ©°, λ¬Έμμ΄μ μμ±ν©λλ€.
ν΄λΉ λͺ¨λΈ(meta-llama/Llama-2-7b-chat-hf)μ λ² μ΄μ€ λͺ¨λΈλ‘ νμ¬ λ―ΈμΈνλμ μ§ννμμ΅λλ€.
'Llama-2-7b-chat-hf' is a pre-trained text generation language model developed by Meta. It takes a string as input and generates text.
We fine-tuned this model based on it(meta-llama/Llama-2-7b-chat-hf).
## Intended uses & limitations
nsmc λ°μ΄ν°μ
μ μ¬μ©μκ° μ
λ ₯ν 리뷰 λ¬Έμ₯μ λΆλ₯νλ μμ΄μ νΈμ
λλ€. μ¬μ©μ 리뷰 λ¬Έμ₯μΌλ‘λΆν° 'κΈμ ' λλ 'λΆμ 'μ νλ¨ν©λλ€.
This agent classifies user-input review sentences from NSMC dataset.
It determines whether the user review is 'positive' or 'negative' based on the input review sentence.
## Training and test data
Training λ° test λ°μ΄ν°λ nsmc λ°μ΄ν° μ
μμ λ‘λ©ν΄ μ¬μ©ν©λλ€. (elvaluation λ°μ΄ν°λ μ¬μ©νμ§ μμ΅λλ€.)
We load and use training and test data from the NSMC dataset. (We do not use an evaluation data.)
## Training procedure
μ¬μ©μμ μν 리뷰 λ¬Έμ₯μ μ
λ ₯μΌλ‘ λ°μ λ¬Έμ₯μ 'κΈμ (1)' λλ 'λΆμ (0)'μΌλ‘ λΆλ₯ν©λλ€.
Accepts movie review sentences from the user as input and classifies the sentences as 'Positive (1)' or 'Negative (0)'.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 900
- mixed_precision_training: Native AMP
### Training results
- **Binary Confusion Matrix**
| | TP | TN |
|:-----|:------------:|:------------:|
| PP | 425 | 67 |
| PN | 66 | 442 |
- **Accuracy**: 0.894
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|