kirankunapuli's picture
Update license
9cb20e7 verified
|
raw
history blame
5.08 kB
---
language:
- en
- hi
license: gemma
tags:
- text-generation
- transformers
- unsloth
- gemma
- trl
base_model: unsloth/gemma-2b-bnb-4bit
datasets:
- yahma/alpaca-cleaned
- ravithejads/samvaad-hi-filtered
- HydraIndicLM/hindi_alpaca_dolly_67k
pipeline_tag: text-generation
---
# 🔥 Gemma-2B-Hinglish-LORA-v1.0 model
### 🚀 Visit this HF Space to try out this model's inference: https://huggingface.co./spaces/kirankunapuli/Gemma-2B-Hinglish-Model-Inference-v1.0
- **Developed by:** [Kiran Kunapuli](https://www.linkedin.com/in/kirankunapuli/)
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-2b-bnb-4bit
- **Model usage:** Use the below code in Python
```python
import re
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("kirankunapuli/Gemma-2B-Hinglish-LORA-v1.0")
model = AutoModelForCausalLM.from_pretrained("kirankunapuli/Gemma-2B-Hinglish-LORA-v1.0")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = model.to(device)
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
# Example 1
inputs = tokenizer(
[
alpaca_prompt.format(
"Please answer the following sentence as requested", # instruction
"ऐतिहासिक स्मारक India Gate कहाँ स्थित है?", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to(device)
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
output = tokenizer.batch_decode(outputs)[0]
response_start = output.find("### Response:") + len("### Response:")
response_end = output.find("<eos>", response_start)
response = output[response_start:response_end].strip()
print(response)
# Example 2
inputs = tokenizer(
[
alpaca_prompt.format(
"Please answer the following sentence as requested", # instruction
"ऐतिहासिक स्मारक इंडिया गेट कहाँ स्थित है? मुझे अंग्रेजी में बताओ", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to(device)
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
output = tokenizer.batch_decode(outputs)[0]
response_pattern = re.compile(r'### Response:\n(.*?)<eos>', re.DOTALL)
response_match = response_pattern.search(output)
if response_match:
response = response_match.group(1).strip()
return response
else:
return "Response not found"
```
- **Model config:**
```python
model = FastLanguageModel.get_peft_model(
model,
r = 16,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 32,
lora_dropout = 0,
bias = "none",
use_gradient_checkpointing = True,
random_state = 42,
use_rslora = True,
loftq_config = None,
)
```
- **Training parameters:**
```python
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
dataset_num_proc = 2,
packing = True,
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
warmup_steps = 5,
max_steps = 120,
learning_rate = 2e-4,
fp16 = not torch.cuda.is_bf16_supported(),
bf16 = torch.cuda.is_bf16_supported(),
logging_steps = 1,
optim = "adamw_8bit",
weight_decay = 0.01,
lr_scheduler_type = "linear",
seed = 42,
output_dir = "outputs",
report_to = "wandb",
),
)
```
- **Training details:**
```
==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1
\\ /| Num examples = 14,343 | Num Epochs = 1
O^O/ \_/ \ Batch size per device = 2 | Gradient Accumulation steps = 4
\ / Total batch size = 8 | Total steps = 120
"-____-" Number of trainable parameters = 19,611,648
GPU = Tesla T4. Max memory = 14.748 GB.
2118.7553 seconds used for training.
35.31 minutes used for training.
Peak reserved memory = 9.172 GB.
Peak reserved memory for training = 6.758 GB.
Peak reserved memory % of max memory = 62.191 %.
Peak reserved memory for training % of max memory = 45.823 %.
```
This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)