metadata
language:
- en
- hi
license: gemma
tags:
- text-generation
- transformers
- unsloth
- gemma
- trl
base_model: unsloth/gemma-2b-bnb-4bit
datasets:
- yahma/alpaca-cleaned
- ravithejads/samvaad-hi-filtered
- HydraIndicLM/hindi_alpaca_dolly_67k
pipeline_tag: text-generation
🔥 Gemma-2B-Hinglish-LORA-v1.0 model
🚀 Visit this HF Space to try out this model's inference: https://huggingface.co./spaces/kirankunapuli/Gemma-2B-Hinglish-Model-Inference-v1.0
- Developed by: Kiran Kunapuli
- License: apache-2.0
- Finetuned from model : unsloth/gemma-2b-bnb-4bit
- Model usage: Use the below code in Python
import re import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("kirankunapuli/Gemma-2B-Hinglish-LORA-v1.0") model = AutoModelForCausalLM.from_pretrained("kirankunapuli/Gemma-2B-Hinglish-LORA-v1.0") device = "cuda:0" if torch.cuda.is_available() else "cpu" model = model.to(device) alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" # Example 1 inputs = tokenizer( [ alpaca_prompt.format( "Please answer the following sentence as requested", # instruction "ऐतिहासिक स्मारक India Gate कहाँ स्थित है?", # input "", # output - leave this blank for generation! ) ], return_tensors = "pt").to(device) outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) output = tokenizer.batch_decode(outputs)[0] response_start = output.find("### Response:") + len("### Response:") response_end = output.find("<eos>", response_start) response = output[response_start:response_end].strip() print(response) # Example 2 inputs = tokenizer( [ alpaca_prompt.format( "Please answer the following sentence as requested", # instruction "ऐतिहासिक स्मारक इंडिया गेट कहाँ स्थित है? मुझे अंग्रेजी में बताओ", # input "", # output - leave this blank for generation! ) ], return_tensors = "pt").to(device) outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) output = tokenizer.batch_decode(outputs)[0] response_pattern = re.compile(r'### Response:\n(.*?)<eos>', re.DOTALL) response_match = response_pattern.search(output) if response_match: response = response_match.group(1).strip() return response else: return "Response not found"
- Model config:
model = FastLanguageModel.get_peft_model( model, r = 16, target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 32, lora_dropout = 0, bias = "none", use_gradient_checkpointing = True, random_state = 42, use_rslora = True, loftq_config = None, )
- Training parameters:
trainer = SFTTrainer( model = model, tokenizer = tokenizer, train_dataset = dataset, dataset_text_field = "text", max_seq_length = max_seq_length, dataset_num_proc = 2, packing = True, args = TrainingArguments( per_device_train_batch_size = 2, gradient_accumulation_steps = 4, warmup_steps = 5, max_steps = 120, learning_rate = 2e-4, fp16 = not torch.cuda.is_bf16_supported(), bf16 = torch.cuda.is_bf16_supported(), logging_steps = 1, optim = "adamw_8bit", weight_decay = 0.01, lr_scheduler_type = "linear", seed = 42, output_dir = "outputs", report_to = "wandb", ), )
- Training details:
==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1 \\ /| Num examples = 14,343 | Num Epochs = 1 O^O/ \_/ \ Batch size per device = 2 | Gradient Accumulation steps = 4 \ / Total batch size = 8 | Total steps = 120 "-____-" Number of trainable parameters = 19,611,648 GPU = Tesla T4. Max memory = 14.748 GB. 2118.7553 seconds used for training. 35.31 minutes used for training. Peak reserved memory = 9.172 GB. Peak reserved memory for training = 6.758 GB. Peak reserved memory % of max memory = 62.191 %. Peak reserved memory for training % of max memory = 45.823 %.
This gemma model was trained 2x faster with Unsloth and Huggingface's TRL library.