wav2vec2-60-Urdu-V8 / README.md
kingabzpro's picture
Update README.md
0d08b71
|
raw
history blame
3.43 kB
metadata
language:
  - ur
license: apache-2.0
tags:
  - automatic-speech-recognition
  - robust-speech-event
datasets:
  - mozilla-foundation/common_voice_8_0
metrics:
  - wer
  - cer
model-index:
  - name: wav2vec2-urdu-V8-Abid
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          type: common_voice
          name: Common Voice ur
          args: ur
        metrics:
          - type: wer
            value: 47.41
            name: Test WER
            args:
              - learning_rate: 0.00007
              - train_batch_size: 64
              - eval_batch_size: 8
              - seed: 42
              - gradient_accumulation_steps: 4
              - total_train_batch_size: 128
              - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
              - lr_scheduler_type: linear
              - lr_scheduler_warmup_steps: 100
              - num_epochs: 100
              - mixed_precision_training: Native AMP
          - type: cer
            value: 25.01
            name: Test CER
            args:
              - learning_rate: 0.00007
              - train_batch_size: 64
              - eval_batch_size: 8
              - seed: 42
              - gradient_accumulation_steps: 4
              - total_train_batch_size: 128
              - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
              - lr_scheduler_type: linear
              - lr_scheduler_warmup_steps: 100
              - num_epochs: 100
              - mixed_precision_training: Native AMP

wav2vec2-60-Urdu-V8

This model is a fine-tuned version of kingabzpro/wav2vec2-urdu on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 4.9192
  • Wer: 0.4741
  • Cer: 0.2504

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.8836 16.62 50 4.7827 0.5011 0.2625
0.6992 33.31 100 3.5358 0.4882 0.2537
0.6321 49.92 150 4.9054 0.4774 0.2519
0.4669 66.62 200 5.9508 0.4719 0.2513
0.3119 83.31 250 5.5791 0.4745 0.2508
0.2788 99.92 300 4.9192 0.4741 0.2504

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0