--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer model-index: - name: wav2vec2-urdu-V8-Abid results: - task: type: automatic-speech-recognition # Required. Example: automatic-speech-recognition name: Speech Recognition # Optional. Example: Speech Recognition dataset: type: common_voice # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: Common Voice ur # Required. Example: Common Voice zh-CN args: ur # Optional. Example: zh-CN metrics: - type: wer # Required. Example: wer value: 47.41 # Required. Example: 20.90 name: Test WER # Optional. Example: Test WER args: - learning_rate: 0.00007 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100 - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order - type: cer # Required. Example: wer value: 25.01 # Required. Example: 20.90 name: Test CER # Optional. Example: Test WER args: - learning_rate: 0.00007 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100 - mixed_precision_training: Native AMP --- # wav2vec2-60-Urdu-V8 This model is a fine-tuned version of [kingabzpro/wav2vec2-urdu](https://huggingface.co./kingabzpro/wav2vec2-urdu) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 4.9192 - Wer: 0.4741 - Cer: 0.2504 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 2.8836 | 16.62 | 50 | 4.7827 | 0.5011 | 0.2625 | | 0.6992 | 33.31 | 100 | 3.5358 | 0.4882 | 0.2537 | | 0.6321 | 49.92 | 150 | 4.9054 | 0.4774 | 0.2519 | | 0.4669 | 66.62 | 200 | 5.9508 | 0.4719 | 0.2513 | | 0.3119 | 83.31 | 250 | 5.5791 | 0.4745 | 0.2508 | | 0.2788 | 99.92 | 300 | 4.9192 | 0.4741 | 0.2504 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0