|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- jdqwoi/TooManyMixRolePlay-7B-Story_V2 |
|
- jdqwoi/TooManyMixRolePlay-7B-Story_V3 |
|
base_model: |
|
- jdqwoi/TooManyMixRolePlay-7B-Story_V2 |
|
- jdqwoi/TooManyMixRolePlay-7B-Story_V3 |
|
--- |
|
|
|
|
|
# EXL2 quants of [jdqwoi/TooManyMixRolePlay-7B-Story_V3.5](https://huggingface.co./jdqwoi/TooManyMixRolePlay-7B-Story_V3.5) |
|
|
|
[6.00 bits per weight](https://huggingface.co./kim512/TooManyMixRolePlay-7B-Story_V3.5-6.0bpw-h6-exl2) |
|
[8.00 bits per weight](https://huggingface.co./kim512/TooManyMixRolePlay-7B-Story_V3.5-8.0bpw-h8-exl2) |
|
|
|
Created using the defaults from exllamav2 0.1.3 convert.py |
|
6.0bpw head bits = 6 |
|
8.0bpw head bits = 8 |
|
length = 8192 |
|
dataset rows = 200 |
|
measurement rows = 32 |
|
measurement length = 8192 |
|
|
|
# TooManyMixRolePlay-7B-Story_V3.5 |
|
|
|
TooManyMixRolePlay-7B-Story_V3.5 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [jdqwoi/TooManyMixRolePlay-7B-Story_V2](https://huggingface.co./jdqwoi/TooManyMixRolePlay-7B-Story_V2) |
|
* [jdqwoi/TooManyMixRolePlay-7B-Story_V3](https://huggingface.co./jdqwoi/TooManyMixRolePlay-7B-Story_V3) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- model: jdqwoi/TooManyMixRolePlay-7B-Story_V2 |
|
layer_range: [0, 32] |
|
- model: jdqwoi/TooManyMixRolePlay-7B-Story_V3 |
|
layer_range: [0, 32] |
|
merge_method: slerp |
|
base_model: jdqwoi/TooManyMixRolePlay-7B-Story_V2 |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.5 |
|
dtype: bfloat16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "jdqwoi/TooManyMixRolePlay-7B-Story_V3.5" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |