File size: 2,308 Bytes
f2262cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
tags:
- merge
- mergekit
- lazymergekit
- jdqwoi/TooManyMixRolePlay-7B-Story_V2
- jdqwoi/TooManyMixRolePlay-7B-Story_V3
base_model:
- jdqwoi/TooManyMixRolePlay-7B-Story_V2
- jdqwoi/TooManyMixRolePlay-7B-Story_V3
---
# EXL2 quants of [jdqwoi/TooManyMixRolePlay-7B-Story_V3.5](https://huggingface.co./jdqwoi/TooManyMixRolePlay-7B-Story_V3.5)
[6.00 bits per weight](https://huggingface.co./kim512/TooManyMixRolePlay-7B-Story_V3.5-6.0bpw-h6-exl2)
[8.00 bits per weight](https://huggingface.co./kim512/TooManyMixRolePlay-7B-Story_V3.5-8.0bpw-h8-exl2)
Created using the defaults from exllamav2 0.1.3 convert.py
6.0bpw head bits = 6
8.0bpw head bits = 8
length = 8192
dataset rows = 200
measurement rows = 32
measurement length = 8192
# TooManyMixRolePlay-7B-Story_V3.5
TooManyMixRolePlay-7B-Story_V3.5 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [jdqwoi/TooManyMixRolePlay-7B-Story_V2](https://huggingface.co./jdqwoi/TooManyMixRolePlay-7B-Story_V2)
* [jdqwoi/TooManyMixRolePlay-7B-Story_V3](https://huggingface.co./jdqwoi/TooManyMixRolePlay-7B-Story_V3)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: jdqwoi/TooManyMixRolePlay-7B-Story_V2
layer_range: [0, 32]
- model: jdqwoi/TooManyMixRolePlay-7B-Story_V3
layer_range: [0, 32]
merge_method: slerp
base_model: jdqwoi/TooManyMixRolePlay-7B-Story_V2
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jdqwoi/TooManyMixRolePlay-7B-Story_V3.5"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |