metadata
library_name: transformers
tags:
- generated_from_trainer
datasets:
- kanishka/babylm2-rewritten-clean-spacy-random_removal_numadj
metrics:
- accuracy
model-index:
- name: >-
opt-babylm2-rewritten-clean-spacy-random_removal_numadj-earlystop-bpe_seed-42_1e-3
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: kanishka/babylm2-rewritten-clean-spacy-random_removal_numadj
type: kanishka/babylm2-rewritten-clean-spacy-random_removal_numadj
metrics:
- name: Accuracy
type: accuracy
value: 0.47811193958124093
opt-babylm2-rewritten-clean-spacy-random_removal_numadj-earlystop-bpe_seed-42_1e-3
This model was trained from scratch on the kanishka/babylm2-rewritten-clean-spacy-random_removal_numadj dataset. It achieves the following results on the evaluation set:
- Loss: 2.6927
- Accuracy: 0.4781
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
32.5094 | 0.9997 | 2243 | 3.8102 | 0.3615 |
27.4934 | 1.9997 | 4486 | 3.2932 | 0.4103 |
24.9364 | 2.9997 | 6729 | 3.0832 | 0.4316 |
23.6407 | 3.9997 | 8972 | 2.9806 | 0.4416 |
22.7053 | 4.9997 | 11215 | 2.9227 | 0.4477 |
22.2601 | 5.9997 | 13458 | 2.8859 | 0.4513 |
21.9123 | 6.9997 | 15701 | 2.8600 | 0.4546 |
21.6403 | 7.9997 | 17944 | 2.8425 | 0.4570 |
21.5087 | 8.9997 | 20187 | 2.8276 | 0.4585 |
21.3483 | 9.9997 | 22430 | 2.8189 | 0.4596 |
21.2068 | 10.9997 | 24673 | 2.8091 | 0.4604 |
21.0757 | 11.9997 | 26916 | 2.8028 | 0.4610 |
21.12 | 12.9997 | 29159 | 2.7997 | 0.4619 |
21.0442 | 13.9997 | 31402 | 2.7952 | 0.4622 |
20.9217 | 14.9997 | 33645 | 2.7750 | 0.4649 |
20.5419 | 15.9997 | 35888 | 2.7506 | 0.4683 |
20.1666 | 16.9997 | 38131 | 2.7245 | 0.4714 |
19.7172 | 17.9997 | 40374 | 2.7101 | 0.4740 |
19.1888 | 18.9997 | 42617 | 2.6955 | 0.4768 |
18.63 | 19.9997 | 44860 | 2.6927 | 0.4781 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0