--- library_name: transformers tags: - generated_from_trainer datasets: - kanishka/babylm2-rewritten-clean-spacy-random_removal_numadj metrics: - accuracy model-index: - name: opt-babylm2-rewritten-clean-spacy-random_removal_numadj-earlystop-bpe_seed-42_1e-3 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/babylm2-rewritten-clean-spacy-random_removal_numadj type: kanishka/babylm2-rewritten-clean-spacy-random_removal_numadj metrics: - name: Accuracy type: accuracy value: 0.47811193958124093 --- # opt-babylm2-rewritten-clean-spacy-random_removal_numadj-earlystop-bpe_seed-42_1e-3 This model was trained from scratch on the kanishka/babylm2-rewritten-clean-spacy-random_removal_numadj dataset. It achieves the following results on the evaluation set: - Loss: 2.6927 - Accuracy: 0.4781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 32.5094 | 0.9997 | 2243 | 3.8102 | 0.3615 | | 27.4934 | 1.9997 | 4486 | 3.2932 | 0.4103 | | 24.9364 | 2.9997 | 6729 | 3.0832 | 0.4316 | | 23.6407 | 3.9997 | 8972 | 2.9806 | 0.4416 | | 22.7053 | 4.9997 | 11215 | 2.9227 | 0.4477 | | 22.2601 | 5.9997 | 13458 | 2.8859 | 0.4513 | | 21.9123 | 6.9997 | 15701 | 2.8600 | 0.4546 | | 21.6403 | 7.9997 | 17944 | 2.8425 | 0.4570 | | 21.5087 | 8.9997 | 20187 | 2.8276 | 0.4585 | | 21.3483 | 9.9997 | 22430 | 2.8189 | 0.4596 | | 21.2068 | 10.9997 | 24673 | 2.8091 | 0.4604 | | 21.0757 | 11.9997 | 26916 | 2.8028 | 0.4610 | | 21.12 | 12.9997 | 29159 | 2.7997 | 0.4619 | | 21.0442 | 13.9997 | 31402 | 2.7952 | 0.4622 | | 20.9217 | 14.9997 | 33645 | 2.7750 | 0.4649 | | 20.5419 | 15.9997 | 35888 | 2.7506 | 0.4683 | | 20.1666 | 16.9997 | 38131 | 2.7245 | 0.4714 | | 19.7172 | 17.9997 | 40374 | 2.7101 | 0.4740 | | 19.1888 | 18.9997 | 42617 | 2.6955 | 0.4768 | | 18.63 | 19.9997 | 44860 | 2.6927 | 0.4781 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0