metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3877
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: >-
<summary>The "_fastdds_statistics_sample_datas" topic tracks the number of
data messages or fragments sent by a DataWriter to deliver a single
sample, excluding built-in and statistics DataWriters.</summary>
sentences:
- |2-
If several new data changes are received at once, the callbacks may
be triggered just once, instead of once per change. The application
must keep *reading* or *taking* until no new changes are available.
- |-
The "_fastdds_statistics_sample_datas" statistics topic collects the
number of user's data messages (or data fragments in case that the
message size is large enough to require RTPS fragmentation) that have
been sent by the user's DataWriter to completely deliver a single
sample. This topic does not apply to builtin (related to Discovery)
and statistics DataWriters.
- >-
+------------------------------------------------+-----------------------------------------+------------+-------------+
| Name |
Description | Values | Default |
|================================================|=========================================|============|=============|
| "<disable_heartbeat_piggyback>" | See
DisableHeartbeatPiggyback. | "bool" | "false" |
+------------------------------------------------+-----------------------------------------+------------+-------------+
- source_sentence: >-
The "enable_statistics_datawriter_with_profile()" method enables a
DataWriter by searching a specific XML profile, requiring two parameters:
the name of the XML profile and the name of the statistics topic to be
enabled.
sentences:
- |-
"enable_statistics_datawriter_with_profile()" method requires as
parameters:
- |-
* **FIELDNAME**: is a reference to a field in the data-structure. The
dot "." is used to navigate through nested structures. The number of
dots that may be used in a FIELDNAME is unlimited. The FIELDNAME can
refer to fields at any depth in the data structure. The names of the
field are those specified in the IDL definition of the corresponding
structure.
- |2-
* The TopicQos describing the behavior of the Topic. If the
provided value is "TOPIC_QOS_DEFAULT", the value of the Default
TopicQos is used.
- source_sentence: >-
<summary> ParticipantResourceLimitsQos configures allocation limits and
physical memory usage for internal resources, including locators,
participants, readers, writers, send buffers, data limits, and content
filter discovery information.
sentences:
- |-
* "max_properties": Defines the maximum size, in octets, of the
properties data in the local or remote participant.
- |-
Log entries can be filtered upon consumption according to their
Category component using regular expressions. Each time an entry is
ready to be consumed, the category filter is applied using
"std::regex_search()". To set a category filter, member function
"Log::SetCategoryFilter()" is used:
- |-
"create_datawriter_with_profile()" will return a null pointer if there
was an error during the operation, e.g. if the provided QoS is not
compatible or is not supported. It is advisable to check that the
returned value is a valid pointer.
- source_sentence: >-
<summary>The Fast DDS Statistics module enables data collection and
publication using DDS topics, which can be activated by setting
"-DFASTDDS_STATISTICS=ON" during CMake configuration.>
sentences:
- |-
"set_default_subscriber_qos()" member function also accepts the
special value "SUBSCRIBER_QOS_DEFAULT" as input argument. This will
reset the current default SubscriberQos to default constructed value
"SubscriberQos()".
- >-
+------------------------------------------------------------------------------+-------------------------------------------+
| Data Member
Name |
Type |
|==============================================================================|===========================================|
|
"last_instance_handle"
| "InstanceHandle_t" |
+------------------------------------------------------------------------------+-------------------------------------------+
- |
Note: Please refer to Statistics QoS Troubleshooting for any problems
related to the statistics module.
- source_sentence: >-
The transport layer provides communication services between DDS entities,
using UDPv4, UDPv6, TCPv4, TCPv6, and SHM transports.
sentences:
- '* **TCPv4**: TCP communication over IPv4 (see TCP Transport).'
- |-
The following table shows the supported primitive types and their
corresponding "TypeKind". The "TypeKind" is used to query the
DynamicTypeBuilderFactory for the specific primitive DynamicType.
- |2-
@annotation MyAnnotation
{
long value;
string name;
};
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Fast-DDS summaries
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.33410672853828305
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.44547563805104406
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5034802784222738
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5661252900232019
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.33410672853828305
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14849187935034802
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10069605568445474
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05661252900232018
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.33410672853828305
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.44547563805104406
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5034802784222738
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5661252900232019
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4437291164486755
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.40535023754281285
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4159956670067687
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.33642691415313225
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.44779582366589327
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.4965197215777262
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5777262180974478
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.33642691415313225
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14926527455529776
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09930394431554523
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.057772621809744774
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.33642691415313225
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.44779582366589327
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4965197215777262
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5777262180974478
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.44632006141530195
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4056724855448751
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4154320968121733
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.3271461716937355
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.44779582366589327
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.4988399071925754
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5754060324825986
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3271461716937355
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14926527455529776
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09976798143851506
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05754060324825985
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3271461716937355
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.44779582366589327
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4988399071925754
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5754060324825986
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.44144646221433803
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3997293116782675
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.41051122365814446
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.31554524361948955
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.42923433874709976
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.4802784222737819
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5754060324825986
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.31554524361948955
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1430781129156999
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09605568445475636
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05754060324825985
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.31554524361948955
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.42923433874709976
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4802784222737819
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5754060324825986
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4328383223462609
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.38895517990645573
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.39937008449735967
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.2853828306264501
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.41531322505800466
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.46867749419953597
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5568445475638051
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2853828306264501
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.13843774168600154
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09373549883990717
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0556844547563805
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2853828306264501
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.41531322505800466
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.46867749419953597
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5568445475638051
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4098284836140229
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.36409144477589944
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.37437465138771003
name: Cosine Map@100
BGE base Fast-DDS summaries
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("juanlofer/bge-base-fastdds-summaries-20epochs-666seed")
sentences = [
'The transport layer provides communication services between DDS entities, using UDPv4, UDPv6, TCPv4, TCPv6, and SHM transports.',
'* **TCPv4**: TCP communication over IPv4 (see TCP Transport).',
'The following table shows the supported primitive types and their\ncorresponding "TypeKind". The "TypeKind" is used to query the\nDynamicTypeBuilderFactory for the specific primitive DynamicType.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3341 |
cosine_accuracy@3 |
0.4455 |
cosine_accuracy@5 |
0.5035 |
cosine_accuracy@10 |
0.5661 |
cosine_precision@1 |
0.3341 |
cosine_precision@3 |
0.1485 |
cosine_precision@5 |
0.1007 |
cosine_precision@10 |
0.0566 |
cosine_recall@1 |
0.3341 |
cosine_recall@3 |
0.4455 |
cosine_recall@5 |
0.5035 |
cosine_recall@10 |
0.5661 |
cosine_ndcg@10 |
0.4437 |
cosine_mrr@10 |
0.4054 |
cosine_map@100 |
0.416 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3364 |
cosine_accuracy@3 |
0.4478 |
cosine_accuracy@5 |
0.4965 |
cosine_accuracy@10 |
0.5777 |
cosine_precision@1 |
0.3364 |
cosine_precision@3 |
0.1493 |
cosine_precision@5 |
0.0993 |
cosine_precision@10 |
0.0578 |
cosine_recall@1 |
0.3364 |
cosine_recall@3 |
0.4478 |
cosine_recall@5 |
0.4965 |
cosine_recall@10 |
0.5777 |
cosine_ndcg@10 |
0.4463 |
cosine_mrr@10 |
0.4057 |
cosine_map@100 |
0.4154 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3271 |
cosine_accuracy@3 |
0.4478 |
cosine_accuracy@5 |
0.4988 |
cosine_accuracy@10 |
0.5754 |
cosine_precision@1 |
0.3271 |
cosine_precision@3 |
0.1493 |
cosine_precision@5 |
0.0998 |
cosine_precision@10 |
0.0575 |
cosine_recall@1 |
0.3271 |
cosine_recall@3 |
0.4478 |
cosine_recall@5 |
0.4988 |
cosine_recall@10 |
0.5754 |
cosine_ndcg@10 |
0.4414 |
cosine_mrr@10 |
0.3997 |
cosine_map@100 |
0.4105 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3155 |
cosine_accuracy@3 |
0.4292 |
cosine_accuracy@5 |
0.4803 |
cosine_accuracy@10 |
0.5754 |
cosine_precision@1 |
0.3155 |
cosine_precision@3 |
0.1431 |
cosine_precision@5 |
0.0961 |
cosine_precision@10 |
0.0575 |
cosine_recall@1 |
0.3155 |
cosine_recall@3 |
0.4292 |
cosine_recall@5 |
0.4803 |
cosine_recall@10 |
0.5754 |
cosine_ndcg@10 |
0.4328 |
cosine_mrr@10 |
0.389 |
cosine_map@100 |
0.3994 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.2854 |
cosine_accuracy@3 |
0.4153 |
cosine_accuracy@5 |
0.4687 |
cosine_accuracy@10 |
0.5568 |
cosine_precision@1 |
0.2854 |
cosine_precision@3 |
0.1384 |
cosine_precision@5 |
0.0937 |
cosine_precision@10 |
0.0557 |
cosine_recall@1 |
0.2854 |
cosine_recall@3 |
0.4153 |
cosine_recall@5 |
0.4687 |
cosine_recall@10 |
0.5568 |
cosine_ndcg@10 |
0.4098 |
cosine_mrr@10 |
0.3641 |
cosine_map@100 |
0.3744 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 20
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
fp16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 20
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.6584 |
10 |
5.9441 |
- |
- |
- |
- |
- |
0.9877 |
15 |
- |
0.3686 |
0.3792 |
0.3819 |
0.3414 |
0.3795 |
1.3128 |
20 |
4.7953 |
- |
- |
- |
- |
- |
1.9712 |
30 |
3.77 |
0.3854 |
0.3963 |
0.3962 |
0.3682 |
0.3995 |
2.6255 |
40 |
2.9211 |
- |
- |
- |
- |
- |
2.9547 |
45 |
- |
0.3866 |
0.3919 |
0.3958 |
0.3759 |
0.3963 |
3.2798 |
50 |
2.4548 |
- |
- |
- |
- |
- |
3.9383 |
60 |
2.0513 |
- |
- |
- |
- |
- |
4.0041 |
61 |
- |
0.3808 |
0.4018 |
0.3980 |
0.3647 |
0.3962 |
4.5926 |
70 |
1.5898 |
- |
- |
- |
- |
- |
4.9877 |
76 |
- |
0.3829 |
0.4029 |
0.4035 |
0.3625 |
0.4014 |
5.2469 |
80 |
1.4677 |
- |
- |
- |
- |
- |
5.9053 |
90 |
1.1974 |
- |
- |
- |
- |
- |
5.9712 |
91 |
- |
0.3918 |
0.4006 |
0.4041 |
0.3654 |
0.4033 |
6.5597 |
100 |
0.9285 |
- |
- |
- |
- |
- |
6.9547 |
106 |
- |
0.3914 |
0.4019 |
0.4033 |
0.3678 |
0.4014 |
7.2140 |
110 |
0.9214 |
- |
- |
- |
- |
- |
7.8724 |
120 |
0.8141 |
- |
- |
- |
- |
- |
8.0041 |
122 |
- |
0.3914 |
0.3993 |
0.4071 |
0.3670 |
0.4027 |
8.5267 |
130 |
0.6706 |
- |
- |
- |
- |
- |
8.9877 |
137 |
- |
0.3903 |
0.4033 |
0.4060 |
0.3721 |
0.4060 |
9.1811 |
140 |
0.6388 |
- |
- |
- |
- |
- |
9.8395 |
150 |
0.5466 |
- |
- |
- |
- |
- |
9.9712 |
152 |
- |
0.3915 |
0.4020 |
0.4079 |
0.3673 |
0.4046 |
10.4938 |
160 |
0.466 |
- |
- |
- |
- |
- |
10.9547 |
167 |
- |
0.3963 |
0.4069 |
0.4112 |
0.3697 |
0.4078 |
11.1481 |
170 |
0.4709 |
- |
- |
- |
- |
- |
11.8066 |
180 |
0.437 |
- |
- |
- |
- |
- |
12.0041 |
183 |
- |
0.4003 |
0.4051 |
0.4096 |
0.3701 |
0.4059 |
12.4609 |
190 |
0.3678 |
- |
- |
- |
- |
- |
12.9877 |
198 |
- |
0.3976 |
0.4075 |
0.4088 |
0.3713 |
0.4080 |
13.1152 |
200 |
0.3944 |
- |
- |
- |
- |
- |
13.7737 |
210 |
0.361 |
- |
- |
- |
- |
- |
13.9712 |
213 |
- |
0.3966 |
0.4091 |
0.4096 |
0.3724 |
0.4107 |
14.4280 |
220 |
0.2977 |
- |
- |
- |
- |
- |
14.9547 |
228 |
- |
0.3979 |
0.4102 |
0.4149 |
0.3744 |
0.4143 |
15.0823 |
230 |
0.3306 |
- |
- |
- |
- |
- |
15.7407 |
240 |
0.3075 |
- |
- |
- |
- |
- |
16.0041 |
244 |
- |
0.3991 |
0.4102 |
0.4156 |
0.3726 |
0.4148 |
16.3951 |
250 |
0.2777 |
- |
- |
- |
- |
- |
16.9877 |
259 |
- |
0.3990 |
0.4101 |
0.4154 |
0.3743 |
0.4167 |
17.0494 |
260 |
0.3044 |
- |
- |
- |
- |
- |
17.7078 |
270 |
0.2885 |
- |
- |
- |
- |
- |
17.9712 |
274 |
- |
0.3991 |
0.4099 |
0.4153 |
0.3746 |
0.4167 |
18.3621 |
280 |
0.2862 |
- |
- |
- |
- |
- |
18.9547 |
289 |
- |
0.3994 |
0.4105 |
0.4154 |
0.3743 |
0.4156 |
19.0165 |
290 |
0.2974 |
- |
- |
- |
- |
- |
19.6749 |
300 |
0.2648 |
0.3994 |
0.4105 |
0.4154 |
0.3744 |
0.4160 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}