BGE base Fast-DDS summaries
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("juanlofer/bge-base-fastdds-summaries-20epochs-666seed")
sentences = [
'The transport layer provides communication services between DDS entities, using UDPv4, UDPv6, TCPv4, TCPv6, and SHM transports.',
'* **TCPv4**: TCP communication over IPv4 (see TCP Transport).',
'The following table shows the supported primitive types and their\ncorresponding "TypeKind". The "TypeKind" is used to query the\nDynamicTypeBuilderFactory for the specific primitive DynamicType.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3341 |
cosine_accuracy@3 |
0.4455 |
cosine_accuracy@5 |
0.5035 |
cosine_accuracy@10 |
0.5661 |
cosine_precision@1 |
0.3341 |
cosine_precision@3 |
0.1485 |
cosine_precision@5 |
0.1007 |
cosine_precision@10 |
0.0566 |
cosine_recall@1 |
0.3341 |
cosine_recall@3 |
0.4455 |
cosine_recall@5 |
0.5035 |
cosine_recall@10 |
0.5661 |
cosine_ndcg@10 |
0.4437 |
cosine_mrr@10 |
0.4054 |
cosine_map@100 |
0.416 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3364 |
cosine_accuracy@3 |
0.4478 |
cosine_accuracy@5 |
0.4965 |
cosine_accuracy@10 |
0.5777 |
cosine_precision@1 |
0.3364 |
cosine_precision@3 |
0.1493 |
cosine_precision@5 |
0.0993 |
cosine_precision@10 |
0.0578 |
cosine_recall@1 |
0.3364 |
cosine_recall@3 |
0.4478 |
cosine_recall@5 |
0.4965 |
cosine_recall@10 |
0.5777 |
cosine_ndcg@10 |
0.4463 |
cosine_mrr@10 |
0.4057 |
cosine_map@100 |
0.4154 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3271 |
cosine_accuracy@3 |
0.4478 |
cosine_accuracy@5 |
0.4988 |
cosine_accuracy@10 |
0.5754 |
cosine_precision@1 |
0.3271 |
cosine_precision@3 |
0.1493 |
cosine_precision@5 |
0.0998 |
cosine_precision@10 |
0.0575 |
cosine_recall@1 |
0.3271 |
cosine_recall@3 |
0.4478 |
cosine_recall@5 |
0.4988 |
cosine_recall@10 |
0.5754 |
cosine_ndcg@10 |
0.4414 |
cosine_mrr@10 |
0.3997 |
cosine_map@100 |
0.4105 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3155 |
cosine_accuracy@3 |
0.4292 |
cosine_accuracy@5 |
0.4803 |
cosine_accuracy@10 |
0.5754 |
cosine_precision@1 |
0.3155 |
cosine_precision@3 |
0.1431 |
cosine_precision@5 |
0.0961 |
cosine_precision@10 |
0.0575 |
cosine_recall@1 |
0.3155 |
cosine_recall@3 |
0.4292 |
cosine_recall@5 |
0.4803 |
cosine_recall@10 |
0.5754 |
cosine_ndcg@10 |
0.4328 |
cosine_mrr@10 |
0.389 |
cosine_map@100 |
0.3994 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.2854 |
cosine_accuracy@3 |
0.4153 |
cosine_accuracy@5 |
0.4687 |
cosine_accuracy@10 |
0.5568 |
cosine_precision@1 |
0.2854 |
cosine_precision@3 |
0.1384 |
cosine_precision@5 |
0.0937 |
cosine_precision@10 |
0.0557 |
cosine_recall@1 |
0.2854 |
cosine_recall@3 |
0.4153 |
cosine_recall@5 |
0.4687 |
cosine_recall@10 |
0.5568 |
cosine_ndcg@10 |
0.4098 |
cosine_mrr@10 |
0.3641 |
cosine_map@100 |
0.3744 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 20
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
fp16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 20
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.6584 |
10 |
5.9441 |
- |
- |
- |
- |
- |
0.9877 |
15 |
- |
0.3686 |
0.3792 |
0.3819 |
0.3414 |
0.3795 |
1.3128 |
20 |
4.7953 |
- |
- |
- |
- |
- |
1.9712 |
30 |
3.77 |
0.3854 |
0.3963 |
0.3962 |
0.3682 |
0.3995 |
2.6255 |
40 |
2.9211 |
- |
- |
- |
- |
- |
2.9547 |
45 |
- |
0.3866 |
0.3919 |
0.3958 |
0.3759 |
0.3963 |
3.2798 |
50 |
2.4548 |
- |
- |
- |
- |
- |
3.9383 |
60 |
2.0513 |
- |
- |
- |
- |
- |
4.0041 |
61 |
- |
0.3808 |
0.4018 |
0.3980 |
0.3647 |
0.3962 |
4.5926 |
70 |
1.5898 |
- |
- |
- |
- |
- |
4.9877 |
76 |
- |
0.3829 |
0.4029 |
0.4035 |
0.3625 |
0.4014 |
5.2469 |
80 |
1.4677 |
- |
- |
- |
- |
- |
5.9053 |
90 |
1.1974 |
- |
- |
- |
- |
- |
5.9712 |
91 |
- |
0.3918 |
0.4006 |
0.4041 |
0.3654 |
0.4033 |
6.5597 |
100 |
0.9285 |
- |
- |
- |
- |
- |
6.9547 |
106 |
- |
0.3914 |
0.4019 |
0.4033 |
0.3678 |
0.4014 |
7.2140 |
110 |
0.9214 |
- |
- |
- |
- |
- |
7.8724 |
120 |
0.8141 |
- |
- |
- |
- |
- |
8.0041 |
122 |
- |
0.3914 |
0.3993 |
0.4071 |
0.3670 |
0.4027 |
8.5267 |
130 |
0.6706 |
- |
- |
- |
- |
- |
8.9877 |
137 |
- |
0.3903 |
0.4033 |
0.4060 |
0.3721 |
0.4060 |
9.1811 |
140 |
0.6388 |
- |
- |
- |
- |
- |
9.8395 |
150 |
0.5466 |
- |
- |
- |
- |
- |
9.9712 |
152 |
- |
0.3915 |
0.4020 |
0.4079 |
0.3673 |
0.4046 |
10.4938 |
160 |
0.466 |
- |
- |
- |
- |
- |
10.9547 |
167 |
- |
0.3963 |
0.4069 |
0.4112 |
0.3697 |
0.4078 |
11.1481 |
170 |
0.4709 |
- |
- |
- |
- |
- |
11.8066 |
180 |
0.437 |
- |
- |
- |
- |
- |
12.0041 |
183 |
- |
0.4003 |
0.4051 |
0.4096 |
0.3701 |
0.4059 |
12.4609 |
190 |
0.3678 |
- |
- |
- |
- |
- |
12.9877 |
198 |
- |
0.3976 |
0.4075 |
0.4088 |
0.3713 |
0.4080 |
13.1152 |
200 |
0.3944 |
- |
- |
- |
- |
- |
13.7737 |
210 |
0.361 |
- |
- |
- |
- |
- |
13.9712 |
213 |
- |
0.3966 |
0.4091 |
0.4096 |
0.3724 |
0.4107 |
14.4280 |
220 |
0.2977 |
- |
- |
- |
- |
- |
14.9547 |
228 |
- |
0.3979 |
0.4102 |
0.4149 |
0.3744 |
0.4143 |
15.0823 |
230 |
0.3306 |
- |
- |
- |
- |
- |
15.7407 |
240 |
0.3075 |
- |
- |
- |
- |
- |
16.0041 |
244 |
- |
0.3991 |
0.4102 |
0.4156 |
0.3726 |
0.4148 |
16.3951 |
250 |
0.2777 |
- |
- |
- |
- |
- |
16.9877 |
259 |
- |
0.3990 |
0.4101 |
0.4154 |
0.3743 |
0.4167 |
17.0494 |
260 |
0.3044 |
- |
- |
- |
- |
- |
17.7078 |
270 |
0.2885 |
- |
- |
- |
- |
- |
17.9712 |
274 |
- |
0.3991 |
0.4099 |
0.4153 |
0.3746 |
0.4167 |
18.3621 |
280 |
0.2862 |
- |
- |
- |
- |
- |
18.9547 |
289 |
- |
0.3994 |
0.4105 |
0.4154 |
0.3743 |
0.4156 |
19.0165 |
290 |
0.2974 |
- |
- |
- |
- |
- |
19.6749 |
300 |
0.2648 |
0.3994 |
0.4105 |
0.4154 |
0.3744 |
0.4160 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}