joshuapb's picture
Add new SentenceTransformer model.
7b63d2c verified
metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:500
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      Non-context LLM: Prompt LLM directly with <atomic-fact> True or False?
      without additional context.

      Retrieval→LLM: Prompt with $k$ related passages retrieved from the
      knowledge source as context.

      Nonparametric probability (NP)): Compute the average likelihood of tokens
      in the atomic fact by a masked LM and use that to make a prediction.

      Retrieval→LLM + NP: Ensemble of two methods.


      Some interesting observations on model hallucination behavior:


      Error rates are higher for rarer entities in the task of biography
      generation.

      Error rates are higher for facts mentioned later in the generation.

      Using retrieval to ground the model generation significantly helps reduce
      hallucination.
    sentences:
      - >-
        What is the impact of infrequent entities on the efficacy of language
        models in the context of biography generation?
      - >-
        In what ways does FActScore enhance the assessment of factual accuracy
        in long-form content generation when compared to conventional evaluation
        techniques?
      - >-
        What approaches does SelfCheckGPT implement when faced with questions it
        cannot answer, and how does this influence its overall reliability in
        delivering accurate information?
  - source_sentence: >-
      Revision stage: Edit the output to correct content unsupported by evidence
      while preserving the original content as much as possible. Initialize the
      revised text $y=x$.


      (1) Per $(q_i, e_{ij})$, an agreement model (via few-shot prompting + CoT,
      $(y, q, e) \to {0,1}$) checks whether the evidence $e_i$ disagrees with
      the current revised text $y$.

      (2) Only if a disagreement is detect, the edit model (via few-shot
      prompting + CoT, $(y, q, e) \to \text{ new }y$) outputs a new version of
      $y$ that aims to agree with evidence $e_{ij}$ while otherwise minimally
      altering $y$.

      (3) Finally only a limited number $M=5$ of evidence goes into the
      attribution report $A$.





      Fig. 12. Illustration of RARR (Retrofit Attribution using Research and
      Revision). (Image source: Gao et al. 2022)

      When evaluating the revised text $y$, both attribution and preservation
      metrics matter.
    sentences:
      - >-
        What impact does adjusting the sampling temperature have on the
        calibration of large language models, and how does this influence the
        uncertainty of their outputs?
      - >-
        How do unanswerable questions differ from answerable ones in the context
        of a language model's understanding of its own capabilities?
      - >-
        In what ways does the agreement model evaluate discrepancies between the
        provided evidence and the updated text, and how does this evaluation
        impact the reliability of AI-generated content modifications?
  - source_sentence: >-
      Non-context LLM: Prompt LLM directly with <atomic-fact> True or False?
      without additional context.

      Retrieval→LLM: Prompt with $k$ related passages retrieved from the
      knowledge source as context.

      Nonparametric probability (NP)): Compute the average likelihood of tokens
      in the atomic fact by a masked LM and use that to make a prediction.

      Retrieval→LLM + NP: Ensemble of two methods.


      Some interesting observations on model hallucination behavior:


      Error rates are higher for rarer entities in the task of biography
      generation.

      Error rates are higher for facts mentioned later in the generation.

      Using retrieval to ground the model generation significantly helps reduce
      hallucination.
    sentences:
      - >-
        In what ways can the acknowledgment of uncertainty by large language
        models (LLMs) contribute to the mitigation of hallucinations and enhance
        the overall factual accuracy of generated content?
      - >-
        In what ways does the process of retrieving related passages contribute
        to minimizing hallucinations in the outputs generated by language
        models, and how does this approach differ from the application of
        nonparametric probability methods?
      - >-
        How does the triplet structure $(c, y, y^*)$ play a crucial role in the
        categorization of errors, and in what ways does it enhance the training
        process of the editor model?
  - source_sentence: >-
      Fine-tuning New Knowledge#

      Fine-tuning a pre-trained LLM via supervised fine-tuning and RLHF is a
      common technique for improving certain capabilities of the model like
      instruction following. Introducing new knowledge at the fine-tuning stage
      is hard to avoid.

      Fine-tuning usually consumes much less compute, making it debatable
      whether the model can reliably learn new knowledge via small-scale
      fine-tuning. Gekhman et al. 2024 studied the research question of whether
      fine-tuning LLMs on new knowledge encourages hallucinations. They found
      that (1) LLMs learn fine-tuning examples with new knowledge slower than
      other examples with knowledge consistent with the pre-existing knowledge
      of the model; (2) Once the examples with new knowledge are eventually
      learned, they increase the model’s tendency to hallucinate.
    sentences:
      - >-
        How do the intentionally designed questions in TruthfulQA highlight
        prevalent misunderstandings regarding AI responses in the healthcare
        domain?
      - >-
        What effect does the slower acquisition of new knowledge compared to
        established knowledge have on the effectiveness of large language models
        in practical scenarios?
      - >-
        How do the RARR methodology and the FAVA model compare in their
        approaches to mitigating hallucination errors in generated outputs, and
        what key distinctions can be identified between the two?
  - source_sentence: >-
      Revision stage: Edit the output to correct content unsupported by evidence
      while preserving the original content as much as possible. Initialize the
      revised text $y=x$.


      (1) Per $(q_i, e_{ij})$, an agreement model (via few-shot prompting + CoT,
      $(y, q, e) \to {0,1}$) checks whether the evidence $e_i$ disagrees with
      the current revised text $y$.

      (2) Only if a disagreement is detect, the edit model (via few-shot
      prompting + CoT, $(y, q, e) \to \text{ new }y$) outputs a new version of
      $y$ that aims to agree with evidence $e_{ij}$ while otherwise minimally
      altering $y$.

      (3) Finally only a limited number $M=5$ of evidence goes into the
      attribution report $A$.





      Fig. 12. Illustration of RARR (Retrofit Attribution using Research and
      Revision). (Image source: Gao et al. 2022)

      When evaluating the revised text $y$, both attribution and preservation
      metrics matter.
    sentences:
      - >-
        What mechanisms does the editing algorithm employ to maintain fidelity
        to the source material while simultaneously ensuring alignment with the
        supporting evidence?
      - >-
        What is the impact of constraining the dataset to a maximum of $M=5$
        instances on the accuracy and reliability of the attribution report $A$
        when analyzing AI-generated content?
      - >-
        In what ways does the implementation of a query generation model enhance
        the research phase when it comes to validating the accuracy of
        information?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.8802083333333334
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.96875
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9895833333333334
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8802083333333334
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3229166666666667
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19791666666666666
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09999999999999999
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8802083333333334
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.96875
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9895833333333334
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9477255159324969
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9301711309523809
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.930171130952381
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.875
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.96875
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9947916666666666
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.875
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3229166666666667
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19895833333333335
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09999999999999999
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.875
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.96875
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9947916666666666
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9459628876705072
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9277405753968253
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9277405753968253
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.8802083333333334
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.96875
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9947916666666666
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8802083333333334
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3229166666666667
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19895833333333335
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09999999999999999
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8802083333333334
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.96875
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9947916666666666
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9458393511377685
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9277405753968254
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9277405753968253
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.8697916666666666
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.984375
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9895833333333334
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9947916666666666
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8697916666666666
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.328125
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19791666666666666
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09947916666666667
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8697916666666666
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.984375
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9895833333333334
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9947916666666666
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9440191417149189
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9265252976190478
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.92687251984127
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.8541666666666666
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.984375
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9947916666666666
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9947916666666666
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8541666666666666
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.328125
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19895833333333335
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09947916666666667
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8541666666666666
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.984375
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9947916666666666
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9947916666666666
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9380774892768095
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9184027777777778
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9186111111111112
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-500")
# Run inference
sentences = [
    'Revision stage: Edit the output to correct content unsupported by evidence while preserving the original content as much as possible. Initialize the revised text $y=x$.\n\n(1) Per $(q_i, e_{ij})$, an agreement model (via few-shot prompting + CoT, $(y, q, e) \\to {0,1}$) checks whether the evidence $e_i$ disagrees with the current revised text $y$.\n(2) Only if a disagreement is detect, the edit model (via few-shot prompting + CoT, $(y, q, e) \\to \\text{ new }y$) outputs a new version of $y$ that aims to agree with evidence $e_{ij}$ while otherwise minimally altering $y$.\n(3) Finally only a limited number $M=5$ of evidence goes into the attribution report $A$.\n\n\n\n\nFig. 12. Illustration of RARR (Retrofit Attribution using Research and Revision). (Image source: Gao et al. 2022)\nWhen evaluating the revised text $y$, both attribution and preservation metrics matter.',
    'What mechanisms does the editing algorithm employ to maintain fidelity to the source material while simultaneously ensuring alignment with the supporting evidence?',
    'What is the impact of constraining the dataset to a maximum of $M=5$ instances on the accuracy and reliability of the attribution report $A$ when analyzing AI-generated content?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.8802
cosine_accuracy@3 0.9688
cosine_accuracy@5 0.9896
cosine_accuracy@10 1.0
cosine_precision@1 0.8802
cosine_precision@3 0.3229
cosine_precision@5 0.1979
cosine_precision@10 0.1
cosine_recall@1 0.8802
cosine_recall@3 0.9688
cosine_recall@5 0.9896
cosine_recall@10 1.0
cosine_ndcg@10 0.9477
cosine_mrr@10 0.9302
cosine_map@100 0.9302

Information Retrieval

Metric Value
cosine_accuracy@1 0.875
cosine_accuracy@3 0.9688
cosine_accuracy@5 0.9948
cosine_accuracy@10 1.0
cosine_precision@1 0.875
cosine_precision@3 0.3229
cosine_precision@5 0.199
cosine_precision@10 0.1
cosine_recall@1 0.875
cosine_recall@3 0.9688
cosine_recall@5 0.9948
cosine_recall@10 1.0
cosine_ndcg@10 0.946
cosine_mrr@10 0.9277
cosine_map@100 0.9277

Information Retrieval

Metric Value
cosine_accuracy@1 0.8802
cosine_accuracy@3 0.9688
cosine_accuracy@5 0.9948
cosine_accuracy@10 1.0
cosine_precision@1 0.8802
cosine_precision@3 0.3229
cosine_precision@5 0.199
cosine_precision@10 0.1
cosine_recall@1 0.8802
cosine_recall@3 0.9688
cosine_recall@5 0.9948
cosine_recall@10 1.0
cosine_ndcg@10 0.9458
cosine_mrr@10 0.9277
cosine_map@100 0.9277

Information Retrieval

Metric Value
cosine_accuracy@1 0.8698
cosine_accuracy@3 0.9844
cosine_accuracy@5 0.9896
cosine_accuracy@10 0.9948
cosine_precision@1 0.8698
cosine_precision@3 0.3281
cosine_precision@5 0.1979
cosine_precision@10 0.0995
cosine_recall@1 0.8698
cosine_recall@3 0.9844
cosine_recall@5 0.9896
cosine_recall@10 0.9948
cosine_ndcg@10 0.944
cosine_mrr@10 0.9265
cosine_map@100 0.9269

Information Retrieval

Metric Value
cosine_accuracy@1 0.8542
cosine_accuracy@3 0.9844
cosine_accuracy@5 0.9948
cosine_accuracy@10 0.9948
cosine_precision@1 0.8542
cosine_precision@3 0.3281
cosine_precision@5 0.199
cosine_precision@10 0.0995
cosine_recall@1 0.8542
cosine_recall@3 0.9844
cosine_recall@5 0.9948
cosine_recall@10 0.9948
cosine_ndcg@10 0.9381
cosine_mrr@10 0.9184
cosine_map@100 0.9186

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.0794 5 5.4149 - - - - -
0.1587 10 4.8587 - - - - -
0.2381 15 3.9711 - - - - -
0.3175 20 3.4853 - - - - -
0.3968 25 3.6227 - - - - -
0.4762 30 3.3359 - - - - -
0.5556 35 2.0868 - - - - -
0.6349 40 2.256 - - - - -
0.7143 45 2.2958 - - - - -
0.7937 50 1.7128 - - - - -
0.8730 55 2.029 - - - - -
0.9524 60 1.9104 - - - - -
1.0 63 - 0.8950 0.9042 0.9039 0.8640 0.8989
1.0317 65 2.5929 - - - - -
1.1111 70 1.4257 - - - - -
1.1905 75 1.9956 - - - - -
1.2698 80 1.5845 - - - - -
1.3492 85 1.7383 - - - - -
1.4286 90 1.4657 - - - - -
1.5079 95 1.8461 - - - - -
1.5873 100 1.8531 - - - - -
1.6667 105 1.6504 - - - - -
1.7460 110 2.7636 - - - - -
1.8254 115 0.7195 - - - - -
1.9048 120 1.2494 - - - - -
1.9841 125 1.7331 - - - - -
2.0 126 - 0.9170 0.9340 0.9167 0.9013 0.9179
2.0635 130 1.1102 - - - - -
2.1429 135 1.8586 - - - - -
2.2222 140 1.4211 - - - - -
2.3016 145 1.9531 - - - - -
2.3810 150 1.9516 - - - - -
2.4603 155 2.1174 - - - - -
2.5397 160 1.7883 - - - - -
2.6190 165 1.4537 - - - - -
2.6984 170 1.3927 - - - - -
2.7778 175 1.2559 - - - - -
2.8571 180 1.8748 - - - - -
2.9365 185 0.7509 - - - - -
3.0 189 - 0.9312 0.9244 0.9241 0.9199 0.9349
3.0159 190 0.947 - - - - -
3.0952 195 1.9463 - - - - -
3.1746 200 1.2077 - - - - -
3.2540 205 0.7721 - - - - -
3.3333 210 1.5633 - - - - -
3.4127 215 1.5042 - - - - -
3.4921 220 1.1531 - - - - -
3.5714 225 1.2408 - - - - -
3.6508 230 0.8085 - - - - -
3.7302 235 1.1195 - - - - -
3.8095 240 1.1843 - - - - -
3.8889 245 0.7176 - - - - -
3.9683 250 1.1715 - - - - -
4.0 252 - 0.9244 0.9287 0.9251 0.9199 0.9300
4.0476 255 1.3187 - - - - -
4.1270 260 0.2891 - - - - -
4.2063 265 1.5887 - - - - -
4.2857 270 1.1227 - - - - -
4.3651 275 1.5385 - - - - -
4.4444 280 0.4732 - - - - -
4.5238 285 1.2039 - - - - -
4.6032 290 1.0755 - - - - -
4.6825 295 1.5345 - - - - -
4.7619 300 1.4255 - - - - -
4.8413 305 1.7436 - - - - -
4.9206 310 0.9408 - - - - -
5.0 315 0.7724 0.9269 0.9277 0.9277 0.9186 0.9302
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}