joshuapb commited on
Commit
7b63d2c
1 Parent(s): 2a74fae

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,925 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:500
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: 'Non-context LLM: Prompt LLM directly with <atomic-fact> True or
35
+ False? without additional context.
36
+
37
+ Retrieval→LLM: Prompt with $k$ related passages retrieved from the knowledge source
38
+ as context.
39
+
40
+ Nonparametric probability (NP)): Compute the average likelihood of tokens in the
41
+ atomic fact by a masked LM and use that to make a prediction.
42
+
43
+ Retrieval→LLM + NP: Ensemble of two methods.
44
+
45
+
46
+ Some interesting observations on model hallucination behavior:
47
+
48
+
49
+ Error rates are higher for rarer entities in the task of biography generation.
50
+
51
+ Error rates are higher for facts mentioned later in the generation.
52
+
53
+ Using retrieval to ground the model generation significantly helps reduce hallucination.'
54
+ sentences:
55
+ - What is the impact of infrequent entities on the efficacy of language models in
56
+ the context of biography generation?
57
+ - In what ways does FActScore enhance the assessment of factual accuracy in long-form
58
+ content generation when compared to conventional evaluation techniques?
59
+ - What approaches does SelfCheckGPT implement when faced with questions it cannot
60
+ answer, and how does this influence its overall reliability in delivering accurate
61
+ information?
62
+ - source_sentence: 'Revision stage: Edit the output to correct content unsupported
63
+ by evidence while preserving the original content as much as possible. Initialize
64
+ the revised text $y=x$.
65
+
66
+
67
+ (1) Per $(q_i, e_{ij})$, an agreement model (via few-shot prompting + CoT, $(y,
68
+ q, e) \to {0,1}$) checks whether the evidence $e_i$ disagrees with the current
69
+ revised text $y$.
70
+
71
+ (2) Only if a disagreement is detect, the edit model (via few-shot prompting +
72
+ CoT, $(y, q, e) \to \text{ new }y$) outputs a new version of $y$ that aims to
73
+ agree with evidence $e_{ij}$ while otherwise minimally altering $y$.
74
+
75
+ (3) Finally only a limited number $M=5$ of evidence goes into the attribution
76
+ report $A$.
77
+
78
+
79
+
80
+
81
+
82
+ Fig. 12. Illustration of RARR (Retrofit Attribution using Research and Revision).
83
+ (Image source: Gao et al. 2022)
84
+
85
+ When evaluating the revised text $y$, both attribution and preservation metrics
86
+ matter.'
87
+ sentences:
88
+ - What impact does adjusting the sampling temperature have on the calibration of
89
+ large language models, and how does this influence the uncertainty of their outputs?
90
+ - How do unanswerable questions differ from answerable ones in the context of a
91
+ language model's understanding of its own capabilities?
92
+ - In what ways does the agreement model evaluate discrepancies between the provided
93
+ evidence and the updated text, and how does this evaluation impact the reliability
94
+ of AI-generated content modifications?
95
+ - source_sentence: 'Non-context LLM: Prompt LLM directly with <atomic-fact> True or
96
+ False? without additional context.
97
+
98
+ Retrieval→LLM: Prompt with $k$ related passages retrieved from the knowledge source
99
+ as context.
100
+
101
+ Nonparametric probability (NP)): Compute the average likelihood of tokens in the
102
+ atomic fact by a masked LM and use that to make a prediction.
103
+
104
+ Retrieval→LLM + NP: Ensemble of two methods.
105
+
106
+
107
+ Some interesting observations on model hallucination behavior:
108
+
109
+
110
+ Error rates are higher for rarer entities in the task of biography generation.
111
+
112
+ Error rates are higher for facts mentioned later in the generation.
113
+
114
+ Using retrieval to ground the model generation significantly helps reduce hallucination.'
115
+ sentences:
116
+ - In what ways can the acknowledgment of uncertainty by large language models (LLMs)
117
+ contribute to the mitigation of hallucinations and enhance the overall factual
118
+ accuracy of generated content?
119
+ - In what ways does the process of retrieving related passages contribute to minimizing
120
+ hallucinations in the outputs generated by language models, and how does this
121
+ approach differ from the application of nonparametric probability methods?
122
+ - How does the triplet structure $(c, y, y^*)$ play a crucial role in the categorization
123
+ of errors, and in what ways does it enhance the training process of the editor
124
+ model?
125
+ - source_sentence: 'Fine-tuning New Knowledge#
126
+
127
+ Fine-tuning a pre-trained LLM via supervised fine-tuning and RLHF is a common
128
+ technique for improving certain capabilities of the model like instruction following.
129
+ Introducing new knowledge at the fine-tuning stage is hard to avoid.
130
+
131
+ Fine-tuning usually consumes much less compute, making it debatable whether the
132
+ model can reliably learn new knowledge via small-scale fine-tuning. Gekhman et
133
+ al. 2024 studied the research question of whether fine-tuning LLMs on new knowledge
134
+ encourages hallucinations. They found that (1) LLMs learn fine-tuning examples
135
+ with new knowledge slower than other examples with knowledge consistent with the
136
+ pre-existing knowledge of the model; (2) Once the examples with new knowledge
137
+ are eventually learned, they increase the model’s tendency to hallucinate.'
138
+ sentences:
139
+ - How do the intentionally designed questions in TruthfulQA highlight prevalent
140
+ misunderstandings regarding AI responses in the healthcare domain?
141
+ - What effect does the slower acquisition of new knowledge compared to established
142
+ knowledge have on the effectiveness of large language models in practical scenarios?
143
+ - How do the RARR methodology and the FAVA model compare in their approaches to
144
+ mitigating hallucination errors in generated outputs, and what key distinctions
145
+ can be identified between the two?
146
+ - source_sentence: 'Revision stage: Edit the output to correct content unsupported
147
+ by evidence while preserving the original content as much as possible. Initialize
148
+ the revised text $y=x$.
149
+
150
+
151
+ (1) Per $(q_i, e_{ij})$, an agreement model (via few-shot prompting + CoT, $(y,
152
+ q, e) \to {0,1}$) checks whether the evidence $e_i$ disagrees with the current
153
+ revised text $y$.
154
+
155
+ (2) Only if a disagreement is detect, the edit model (via few-shot prompting +
156
+ CoT, $(y, q, e) \to \text{ new }y$) outputs a new version of $y$ that aims to
157
+ agree with evidence $e_{ij}$ while otherwise minimally altering $y$.
158
+
159
+ (3) Finally only a limited number $M=5$ of evidence goes into the attribution
160
+ report $A$.
161
+
162
+
163
+
164
+
165
+
166
+ Fig. 12. Illustration of RARR (Retrofit Attribution using Research and Revision).
167
+ (Image source: Gao et al. 2022)
168
+
169
+ When evaluating the revised text $y$, both attribution and preservation metrics
170
+ matter.'
171
+ sentences:
172
+ - What mechanisms does the editing algorithm employ to maintain fidelity to the
173
+ source material while simultaneously ensuring alignment with the supporting evidence?
174
+ - What is the impact of constraining the dataset to a maximum of $M=5$ instances
175
+ on the accuracy and reliability of the attribution report $A$ when analyzing AI-generated
176
+ content?
177
+ - In what ways does the implementation of a query generation model enhance the research
178
+ phase when it comes to validating the accuracy of information?
179
+ model-index:
180
+ - name: BGE base Financial Matryoshka
181
+ results:
182
+ - task:
183
+ type: information-retrieval
184
+ name: Information Retrieval
185
+ dataset:
186
+ name: dim 768
187
+ type: dim_768
188
+ metrics:
189
+ - type: cosine_accuracy@1
190
+ value: 0.8802083333333334
191
+ name: Cosine Accuracy@1
192
+ - type: cosine_accuracy@3
193
+ value: 0.96875
194
+ name: Cosine Accuracy@3
195
+ - type: cosine_accuracy@5
196
+ value: 0.9895833333333334
197
+ name: Cosine Accuracy@5
198
+ - type: cosine_accuracy@10
199
+ value: 1.0
200
+ name: Cosine Accuracy@10
201
+ - type: cosine_precision@1
202
+ value: 0.8802083333333334
203
+ name: Cosine Precision@1
204
+ - type: cosine_precision@3
205
+ value: 0.3229166666666667
206
+ name: Cosine Precision@3
207
+ - type: cosine_precision@5
208
+ value: 0.19791666666666666
209
+ name: Cosine Precision@5
210
+ - type: cosine_precision@10
211
+ value: 0.09999999999999999
212
+ name: Cosine Precision@10
213
+ - type: cosine_recall@1
214
+ value: 0.8802083333333334
215
+ name: Cosine Recall@1
216
+ - type: cosine_recall@3
217
+ value: 0.96875
218
+ name: Cosine Recall@3
219
+ - type: cosine_recall@5
220
+ value: 0.9895833333333334
221
+ name: Cosine Recall@5
222
+ - type: cosine_recall@10
223
+ value: 1.0
224
+ name: Cosine Recall@10
225
+ - type: cosine_ndcg@10
226
+ value: 0.9477255159324969
227
+ name: Cosine Ndcg@10
228
+ - type: cosine_mrr@10
229
+ value: 0.9301711309523809
230
+ name: Cosine Mrr@10
231
+ - type: cosine_map@100
232
+ value: 0.930171130952381
233
+ name: Cosine Map@100
234
+ - task:
235
+ type: information-retrieval
236
+ name: Information Retrieval
237
+ dataset:
238
+ name: dim 512
239
+ type: dim_512
240
+ metrics:
241
+ - type: cosine_accuracy@1
242
+ value: 0.875
243
+ name: Cosine Accuracy@1
244
+ - type: cosine_accuracy@3
245
+ value: 0.96875
246
+ name: Cosine Accuracy@3
247
+ - type: cosine_accuracy@5
248
+ value: 0.9947916666666666
249
+ name: Cosine Accuracy@5
250
+ - type: cosine_accuracy@10
251
+ value: 1.0
252
+ name: Cosine Accuracy@10
253
+ - type: cosine_precision@1
254
+ value: 0.875
255
+ name: Cosine Precision@1
256
+ - type: cosine_precision@3
257
+ value: 0.3229166666666667
258
+ name: Cosine Precision@3
259
+ - type: cosine_precision@5
260
+ value: 0.19895833333333335
261
+ name: Cosine Precision@5
262
+ - type: cosine_precision@10
263
+ value: 0.09999999999999999
264
+ name: Cosine Precision@10
265
+ - type: cosine_recall@1
266
+ value: 0.875
267
+ name: Cosine Recall@1
268
+ - type: cosine_recall@3
269
+ value: 0.96875
270
+ name: Cosine Recall@3
271
+ - type: cosine_recall@5
272
+ value: 0.9947916666666666
273
+ name: Cosine Recall@5
274
+ - type: cosine_recall@10
275
+ value: 1.0
276
+ name: Cosine Recall@10
277
+ - type: cosine_ndcg@10
278
+ value: 0.9459628876705072
279
+ name: Cosine Ndcg@10
280
+ - type: cosine_mrr@10
281
+ value: 0.9277405753968253
282
+ name: Cosine Mrr@10
283
+ - type: cosine_map@100
284
+ value: 0.9277405753968253
285
+ name: Cosine Map@100
286
+ - task:
287
+ type: information-retrieval
288
+ name: Information Retrieval
289
+ dataset:
290
+ name: dim 256
291
+ type: dim_256
292
+ metrics:
293
+ - type: cosine_accuracy@1
294
+ value: 0.8802083333333334
295
+ name: Cosine Accuracy@1
296
+ - type: cosine_accuracy@3
297
+ value: 0.96875
298
+ name: Cosine Accuracy@3
299
+ - type: cosine_accuracy@5
300
+ value: 0.9947916666666666
301
+ name: Cosine Accuracy@5
302
+ - type: cosine_accuracy@10
303
+ value: 1.0
304
+ name: Cosine Accuracy@10
305
+ - type: cosine_precision@1
306
+ value: 0.8802083333333334
307
+ name: Cosine Precision@1
308
+ - type: cosine_precision@3
309
+ value: 0.3229166666666667
310
+ name: Cosine Precision@3
311
+ - type: cosine_precision@5
312
+ value: 0.19895833333333335
313
+ name: Cosine Precision@5
314
+ - type: cosine_precision@10
315
+ value: 0.09999999999999999
316
+ name: Cosine Precision@10
317
+ - type: cosine_recall@1
318
+ value: 0.8802083333333334
319
+ name: Cosine Recall@1
320
+ - type: cosine_recall@3
321
+ value: 0.96875
322
+ name: Cosine Recall@3
323
+ - type: cosine_recall@5
324
+ value: 0.9947916666666666
325
+ name: Cosine Recall@5
326
+ - type: cosine_recall@10
327
+ value: 1.0
328
+ name: Cosine Recall@10
329
+ - type: cosine_ndcg@10
330
+ value: 0.9458393511377685
331
+ name: Cosine Ndcg@10
332
+ - type: cosine_mrr@10
333
+ value: 0.9277405753968254
334
+ name: Cosine Mrr@10
335
+ - type: cosine_map@100
336
+ value: 0.9277405753968253
337
+ name: Cosine Map@100
338
+ - task:
339
+ type: information-retrieval
340
+ name: Information Retrieval
341
+ dataset:
342
+ name: dim 128
343
+ type: dim_128
344
+ metrics:
345
+ - type: cosine_accuracy@1
346
+ value: 0.8697916666666666
347
+ name: Cosine Accuracy@1
348
+ - type: cosine_accuracy@3
349
+ value: 0.984375
350
+ name: Cosine Accuracy@3
351
+ - type: cosine_accuracy@5
352
+ value: 0.9895833333333334
353
+ name: Cosine Accuracy@5
354
+ - type: cosine_accuracy@10
355
+ value: 0.9947916666666666
356
+ name: Cosine Accuracy@10
357
+ - type: cosine_precision@1
358
+ value: 0.8697916666666666
359
+ name: Cosine Precision@1
360
+ - type: cosine_precision@3
361
+ value: 0.328125
362
+ name: Cosine Precision@3
363
+ - type: cosine_precision@5
364
+ value: 0.19791666666666666
365
+ name: Cosine Precision@5
366
+ - type: cosine_precision@10
367
+ value: 0.09947916666666667
368
+ name: Cosine Precision@10
369
+ - type: cosine_recall@1
370
+ value: 0.8697916666666666
371
+ name: Cosine Recall@1
372
+ - type: cosine_recall@3
373
+ value: 0.984375
374
+ name: Cosine Recall@3
375
+ - type: cosine_recall@5
376
+ value: 0.9895833333333334
377
+ name: Cosine Recall@5
378
+ - type: cosine_recall@10
379
+ value: 0.9947916666666666
380
+ name: Cosine Recall@10
381
+ - type: cosine_ndcg@10
382
+ value: 0.9440191417149189
383
+ name: Cosine Ndcg@10
384
+ - type: cosine_mrr@10
385
+ value: 0.9265252976190478
386
+ name: Cosine Mrr@10
387
+ - type: cosine_map@100
388
+ value: 0.92687251984127
389
+ name: Cosine Map@100
390
+ - task:
391
+ type: information-retrieval
392
+ name: Information Retrieval
393
+ dataset:
394
+ name: dim 64
395
+ type: dim_64
396
+ metrics:
397
+ - type: cosine_accuracy@1
398
+ value: 0.8541666666666666
399
+ name: Cosine Accuracy@1
400
+ - type: cosine_accuracy@3
401
+ value: 0.984375
402
+ name: Cosine Accuracy@3
403
+ - type: cosine_accuracy@5
404
+ value: 0.9947916666666666
405
+ name: Cosine Accuracy@5
406
+ - type: cosine_accuracy@10
407
+ value: 0.9947916666666666
408
+ name: Cosine Accuracy@10
409
+ - type: cosine_precision@1
410
+ value: 0.8541666666666666
411
+ name: Cosine Precision@1
412
+ - type: cosine_precision@3
413
+ value: 0.328125
414
+ name: Cosine Precision@3
415
+ - type: cosine_precision@5
416
+ value: 0.19895833333333335
417
+ name: Cosine Precision@5
418
+ - type: cosine_precision@10
419
+ value: 0.09947916666666667
420
+ name: Cosine Precision@10
421
+ - type: cosine_recall@1
422
+ value: 0.8541666666666666
423
+ name: Cosine Recall@1
424
+ - type: cosine_recall@3
425
+ value: 0.984375
426
+ name: Cosine Recall@3
427
+ - type: cosine_recall@5
428
+ value: 0.9947916666666666
429
+ name: Cosine Recall@5
430
+ - type: cosine_recall@10
431
+ value: 0.9947916666666666
432
+ name: Cosine Recall@10
433
+ - type: cosine_ndcg@10
434
+ value: 0.9380774892768095
435
+ name: Cosine Ndcg@10
436
+ - type: cosine_mrr@10
437
+ value: 0.9184027777777778
438
+ name: Cosine Mrr@10
439
+ - type: cosine_map@100
440
+ value: 0.9186111111111112
441
+ name: Cosine Map@100
442
+ ---
443
+
444
+ # BGE base Financial Matryoshka
445
+
446
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
447
+
448
+ ## Model Details
449
+
450
+ ### Model Description
451
+ - **Model Type:** Sentence Transformer
452
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
453
+ - **Maximum Sequence Length:** 512 tokens
454
+ - **Output Dimensionality:** 768 tokens
455
+ - **Similarity Function:** Cosine Similarity
456
+ <!-- - **Training Dataset:** Unknown -->
457
+ - **Language:** en
458
+ - **License:** apache-2.0
459
+
460
+ ### Model Sources
461
+
462
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
463
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
464
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
465
+
466
+ ### Full Model Architecture
467
+
468
+ ```
469
+ SentenceTransformer(
470
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
471
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
472
+ (2): Normalize()
473
+ )
474
+ ```
475
+
476
+ ## Usage
477
+
478
+ ### Direct Usage (Sentence Transformers)
479
+
480
+ First install the Sentence Transformers library:
481
+
482
+ ```bash
483
+ pip install -U sentence-transformers
484
+ ```
485
+
486
+ Then you can load this model and run inference.
487
+ ```python
488
+ from sentence_transformers import SentenceTransformer
489
+
490
+ # Download from the 🤗 Hub
491
+ model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-500")
492
+ # Run inference
493
+ sentences = [
494
+ 'Revision stage: Edit the output to correct content unsupported by evidence while preserving the original content as much as possible. Initialize the revised text $y=x$.\n\n(1) Per $(q_i, e_{ij})$, an agreement model (via few-shot prompting + CoT, $(y, q, e) \\to {0,1}$) checks whether the evidence $e_i$ disagrees with the current revised text $y$.\n(2) Only if a disagreement is detect, the edit model (via few-shot prompting + CoT, $(y, q, e) \\to \\text{ new }y$) outputs a new version of $y$ that aims to agree with evidence $e_{ij}$ while otherwise minimally altering $y$.\n(3) Finally only a limited number $M=5$ of evidence goes into the attribution report $A$.\n\n\n\n\nFig. 12. Illustration of RARR (Retrofit Attribution using Research and Revision). (Image source: Gao et al. 2022)\nWhen evaluating the revised text $y$, both attribution and preservation metrics matter.',
495
+ 'What mechanisms does the editing algorithm employ to maintain fidelity to the source material while simultaneously ensuring alignment with the supporting evidence?',
496
+ 'What is the impact of constraining the dataset to a maximum of $M=5$ instances on the accuracy and reliability of the attribution report $A$ when analyzing AI-generated content?',
497
+ ]
498
+ embeddings = model.encode(sentences)
499
+ print(embeddings.shape)
500
+ # [3, 768]
501
+
502
+ # Get the similarity scores for the embeddings
503
+ similarities = model.similarity(embeddings, embeddings)
504
+ print(similarities.shape)
505
+ # [3, 3]
506
+ ```
507
+
508
+ <!--
509
+ ### Direct Usage (Transformers)
510
+
511
+ <details><summary>Click to see the direct usage in Transformers</summary>
512
+
513
+ </details>
514
+ -->
515
+
516
+ <!--
517
+ ### Downstream Usage (Sentence Transformers)
518
+
519
+ You can finetune this model on your own dataset.
520
+
521
+ <details><summary>Click to expand</summary>
522
+
523
+ </details>
524
+ -->
525
+
526
+ <!--
527
+ ### Out-of-Scope Use
528
+
529
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
530
+ -->
531
+
532
+ ## Evaluation
533
+
534
+ ### Metrics
535
+
536
+ #### Information Retrieval
537
+ * Dataset: `dim_768`
538
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
539
+
540
+ | Metric | Value |
541
+ |:--------------------|:-----------|
542
+ | cosine_accuracy@1 | 0.8802 |
543
+ | cosine_accuracy@3 | 0.9688 |
544
+ | cosine_accuracy@5 | 0.9896 |
545
+ | cosine_accuracy@10 | 1.0 |
546
+ | cosine_precision@1 | 0.8802 |
547
+ | cosine_precision@3 | 0.3229 |
548
+ | cosine_precision@5 | 0.1979 |
549
+ | cosine_precision@10 | 0.1 |
550
+ | cosine_recall@1 | 0.8802 |
551
+ | cosine_recall@3 | 0.9688 |
552
+ | cosine_recall@5 | 0.9896 |
553
+ | cosine_recall@10 | 1.0 |
554
+ | cosine_ndcg@10 | 0.9477 |
555
+ | cosine_mrr@10 | 0.9302 |
556
+ | **cosine_map@100** | **0.9302** |
557
+
558
+ #### Information Retrieval
559
+ * Dataset: `dim_512`
560
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
561
+
562
+ | Metric | Value |
563
+ |:--------------------|:-----------|
564
+ | cosine_accuracy@1 | 0.875 |
565
+ | cosine_accuracy@3 | 0.9688 |
566
+ | cosine_accuracy@5 | 0.9948 |
567
+ | cosine_accuracy@10 | 1.0 |
568
+ | cosine_precision@1 | 0.875 |
569
+ | cosine_precision@3 | 0.3229 |
570
+ | cosine_precision@5 | 0.199 |
571
+ | cosine_precision@10 | 0.1 |
572
+ | cosine_recall@1 | 0.875 |
573
+ | cosine_recall@3 | 0.9688 |
574
+ | cosine_recall@5 | 0.9948 |
575
+ | cosine_recall@10 | 1.0 |
576
+ | cosine_ndcg@10 | 0.946 |
577
+ | cosine_mrr@10 | 0.9277 |
578
+ | **cosine_map@100** | **0.9277** |
579
+
580
+ #### Information Retrieval
581
+ * Dataset: `dim_256`
582
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
583
+
584
+ | Metric | Value |
585
+ |:--------------------|:-----------|
586
+ | cosine_accuracy@1 | 0.8802 |
587
+ | cosine_accuracy@3 | 0.9688 |
588
+ | cosine_accuracy@5 | 0.9948 |
589
+ | cosine_accuracy@10 | 1.0 |
590
+ | cosine_precision@1 | 0.8802 |
591
+ | cosine_precision@3 | 0.3229 |
592
+ | cosine_precision@5 | 0.199 |
593
+ | cosine_precision@10 | 0.1 |
594
+ | cosine_recall@1 | 0.8802 |
595
+ | cosine_recall@3 | 0.9688 |
596
+ | cosine_recall@5 | 0.9948 |
597
+ | cosine_recall@10 | 1.0 |
598
+ | cosine_ndcg@10 | 0.9458 |
599
+ | cosine_mrr@10 | 0.9277 |
600
+ | **cosine_map@100** | **0.9277** |
601
+
602
+ #### Information Retrieval
603
+ * Dataset: `dim_128`
604
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
605
+
606
+ | Metric | Value |
607
+ |:--------------------|:-----------|
608
+ | cosine_accuracy@1 | 0.8698 |
609
+ | cosine_accuracy@3 | 0.9844 |
610
+ | cosine_accuracy@5 | 0.9896 |
611
+ | cosine_accuracy@10 | 0.9948 |
612
+ | cosine_precision@1 | 0.8698 |
613
+ | cosine_precision@3 | 0.3281 |
614
+ | cosine_precision@5 | 0.1979 |
615
+ | cosine_precision@10 | 0.0995 |
616
+ | cosine_recall@1 | 0.8698 |
617
+ | cosine_recall@3 | 0.9844 |
618
+ | cosine_recall@5 | 0.9896 |
619
+ | cosine_recall@10 | 0.9948 |
620
+ | cosine_ndcg@10 | 0.944 |
621
+ | cosine_mrr@10 | 0.9265 |
622
+ | **cosine_map@100** | **0.9269** |
623
+
624
+ #### Information Retrieval
625
+ * Dataset: `dim_64`
626
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
627
+
628
+ | Metric | Value |
629
+ |:--------------------|:-----------|
630
+ | cosine_accuracy@1 | 0.8542 |
631
+ | cosine_accuracy@3 | 0.9844 |
632
+ | cosine_accuracy@5 | 0.9948 |
633
+ | cosine_accuracy@10 | 0.9948 |
634
+ | cosine_precision@1 | 0.8542 |
635
+ | cosine_precision@3 | 0.3281 |
636
+ | cosine_precision@5 | 0.199 |
637
+ | cosine_precision@10 | 0.0995 |
638
+ | cosine_recall@1 | 0.8542 |
639
+ | cosine_recall@3 | 0.9844 |
640
+ | cosine_recall@5 | 0.9948 |
641
+ | cosine_recall@10 | 0.9948 |
642
+ | cosine_ndcg@10 | 0.9381 |
643
+ | cosine_mrr@10 | 0.9184 |
644
+ | **cosine_map@100** | **0.9186** |
645
+
646
+ <!--
647
+ ## Bias, Risks and Limitations
648
+
649
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
650
+ -->
651
+
652
+ <!--
653
+ ### Recommendations
654
+
655
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
656
+ -->
657
+
658
+ ## Training Details
659
+
660
+ ### Training Hyperparameters
661
+ #### Non-Default Hyperparameters
662
+
663
+ - `eval_strategy`: epoch
664
+ - `per_device_eval_batch_size`: 16
665
+ - `learning_rate`: 2e-05
666
+ - `num_train_epochs`: 5
667
+ - `lr_scheduler_type`: cosine
668
+ - `warmup_ratio`: 0.1
669
+ - `load_best_model_at_end`: True
670
+
671
+ #### All Hyperparameters
672
+ <details><summary>Click to expand</summary>
673
+
674
+ - `overwrite_output_dir`: False
675
+ - `do_predict`: False
676
+ - `eval_strategy`: epoch
677
+ - `prediction_loss_only`: True
678
+ - `per_device_train_batch_size`: 8
679
+ - `per_device_eval_batch_size`: 16
680
+ - `per_gpu_train_batch_size`: None
681
+ - `per_gpu_eval_batch_size`: None
682
+ - `gradient_accumulation_steps`: 1
683
+ - `eval_accumulation_steps`: None
684
+ - `learning_rate`: 2e-05
685
+ - `weight_decay`: 0.0
686
+ - `adam_beta1`: 0.9
687
+ - `adam_beta2`: 0.999
688
+ - `adam_epsilon`: 1e-08
689
+ - `max_grad_norm`: 1.0
690
+ - `num_train_epochs`: 5
691
+ - `max_steps`: -1
692
+ - `lr_scheduler_type`: cosine
693
+ - `lr_scheduler_kwargs`: {}
694
+ - `warmup_ratio`: 0.1
695
+ - `warmup_steps`: 0
696
+ - `log_level`: passive
697
+ - `log_level_replica`: warning
698
+ - `log_on_each_node`: True
699
+ - `logging_nan_inf_filter`: True
700
+ - `save_safetensors`: True
701
+ - `save_on_each_node`: False
702
+ - `save_only_model`: False
703
+ - `restore_callback_states_from_checkpoint`: False
704
+ - `no_cuda`: False
705
+ - `use_cpu`: False
706
+ - `use_mps_device`: False
707
+ - `seed`: 42
708
+ - `data_seed`: None
709
+ - `jit_mode_eval`: False
710
+ - `use_ipex`: False
711
+ - `bf16`: False
712
+ - `fp16`: False
713
+ - `fp16_opt_level`: O1
714
+ - `half_precision_backend`: auto
715
+ - `bf16_full_eval`: False
716
+ - `fp16_full_eval`: False
717
+ - `tf32`: None
718
+ - `local_rank`: 0
719
+ - `ddp_backend`: None
720
+ - `tpu_num_cores`: None
721
+ - `tpu_metrics_debug`: False
722
+ - `debug`: []
723
+ - `dataloader_drop_last`: False
724
+ - `dataloader_num_workers`: 0
725
+ - `dataloader_prefetch_factor`: None
726
+ - `past_index`: -1
727
+ - `disable_tqdm`: False
728
+ - `remove_unused_columns`: True
729
+ - `label_names`: None
730
+ - `load_best_model_at_end`: True
731
+ - `ignore_data_skip`: False
732
+ - `fsdp`: []
733
+ - `fsdp_min_num_params`: 0
734
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
735
+ - `fsdp_transformer_layer_cls_to_wrap`: None
736
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
737
+ - `deepspeed`: None
738
+ - `label_smoothing_factor`: 0.0
739
+ - `optim`: adamw_torch
740
+ - `optim_args`: None
741
+ - `adafactor`: False
742
+ - `group_by_length`: False
743
+ - `length_column_name`: length
744
+ - `ddp_find_unused_parameters`: None
745
+ - `ddp_bucket_cap_mb`: None
746
+ - `ddp_broadcast_buffers`: False
747
+ - `dataloader_pin_memory`: True
748
+ - `dataloader_persistent_workers`: False
749
+ - `skip_memory_metrics`: True
750
+ - `use_legacy_prediction_loop`: False
751
+ - `push_to_hub`: False
752
+ - `resume_from_checkpoint`: None
753
+ - `hub_model_id`: None
754
+ - `hub_strategy`: every_save
755
+ - `hub_private_repo`: False
756
+ - `hub_always_push`: False
757
+ - `gradient_checkpointing`: False
758
+ - `gradient_checkpointing_kwargs`: None
759
+ - `include_inputs_for_metrics`: False
760
+ - `eval_do_concat_batches`: True
761
+ - `fp16_backend`: auto
762
+ - `push_to_hub_model_id`: None
763
+ - `push_to_hub_organization`: None
764
+ - `mp_parameters`:
765
+ - `auto_find_batch_size`: False
766
+ - `full_determinism`: False
767
+ - `torchdynamo`: None
768
+ - `ray_scope`: last
769
+ - `ddp_timeout`: 1800
770
+ - `torch_compile`: False
771
+ - `torch_compile_backend`: None
772
+ - `torch_compile_mode`: None
773
+ - `dispatch_batches`: None
774
+ - `split_batches`: None
775
+ - `include_tokens_per_second`: False
776
+ - `include_num_input_tokens_seen`: False
777
+ - `neftune_noise_alpha`: None
778
+ - `optim_target_modules`: None
779
+ - `batch_eval_metrics`: False
780
+ - `eval_on_start`: False
781
+ - `batch_sampler`: batch_sampler
782
+ - `multi_dataset_batch_sampler`: proportional
783
+
784
+ </details>
785
+
786
+ ### Training Logs
787
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
788
+ |:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
789
+ | 0.0794 | 5 | 5.4149 | - | - | - | - | - |
790
+ | 0.1587 | 10 | 4.8587 | - | - | - | - | - |
791
+ | 0.2381 | 15 | 3.9711 | - | - | - | - | - |
792
+ | 0.3175 | 20 | 3.4853 | - | - | - | - | - |
793
+ | 0.3968 | 25 | 3.6227 | - | - | - | - | - |
794
+ | 0.4762 | 30 | 3.3359 | - | - | - | - | - |
795
+ | 0.5556 | 35 | 2.0868 | - | - | - | - | - |
796
+ | 0.6349 | 40 | 2.256 | - | - | - | - | - |
797
+ | 0.7143 | 45 | 2.2958 | - | - | - | - | - |
798
+ | 0.7937 | 50 | 1.7128 | - | - | - | - | - |
799
+ | 0.8730 | 55 | 2.029 | - | - | - | - | - |
800
+ | 0.9524 | 60 | 1.9104 | - | - | - | - | - |
801
+ | 1.0 | 63 | - | 0.8950 | 0.9042 | 0.9039 | 0.8640 | 0.8989 |
802
+ | 1.0317 | 65 | 2.5929 | - | - | - | - | - |
803
+ | 1.1111 | 70 | 1.4257 | - | - | - | - | - |
804
+ | 1.1905 | 75 | 1.9956 | - | - | - | - | - |
805
+ | 1.2698 | 80 | 1.5845 | - | - | - | - | - |
806
+ | 1.3492 | 85 | 1.7383 | - | - | - | - | - |
807
+ | 1.4286 | 90 | 1.4657 | - | - | - | - | - |
808
+ | 1.5079 | 95 | 1.8461 | - | - | - | - | - |
809
+ | 1.5873 | 100 | 1.8531 | - | - | - | - | - |
810
+ | 1.6667 | 105 | 1.6504 | - | - | - | - | - |
811
+ | 1.7460 | 110 | 2.7636 | - | - | - | - | - |
812
+ | 1.8254 | 115 | 0.7195 | - | - | - | - | - |
813
+ | 1.9048 | 120 | 1.2494 | - | - | - | - | - |
814
+ | 1.9841 | 125 | 1.7331 | - | - | - | - | - |
815
+ | 2.0 | 126 | - | 0.9170 | 0.9340 | 0.9167 | 0.9013 | 0.9179 |
816
+ | 2.0635 | 130 | 1.1102 | - | - | - | - | - |
817
+ | 2.1429 | 135 | 1.8586 | - | - | - | - | - |
818
+ | 2.2222 | 140 | 1.4211 | - | - | - | - | - |
819
+ | 2.3016 | 145 | 1.9531 | - | - | - | - | - |
820
+ | 2.3810 | 150 | 1.9516 | - | - | - | - | - |
821
+ | 2.4603 | 155 | 2.1174 | - | - | - | - | - |
822
+ | 2.5397 | 160 | 1.7883 | - | - | - | - | - |
823
+ | 2.6190 | 165 | 1.4537 | - | - | - | - | - |
824
+ | 2.6984 | 170 | 1.3927 | - | - | - | - | - |
825
+ | 2.7778 | 175 | 1.2559 | - | - | - | - | - |
826
+ | 2.8571 | 180 | 1.8748 | - | - | - | - | - |
827
+ | 2.9365 | 185 | 0.7509 | - | - | - | - | - |
828
+ | 3.0 | 189 | - | 0.9312 | 0.9244 | 0.9241 | 0.9199 | 0.9349 |
829
+ | 3.0159 | 190 | 0.947 | - | - | - | - | - |
830
+ | 3.0952 | 195 | 1.9463 | - | - | - | - | - |
831
+ | 3.1746 | 200 | 1.2077 | - | - | - | - | - |
832
+ | 3.2540 | 205 | 0.7721 | - | - | - | - | - |
833
+ | 3.3333 | 210 | 1.5633 | - | - | - | - | - |
834
+ | 3.4127 | 215 | 1.5042 | - | - | - | - | - |
835
+ | 3.4921 | 220 | 1.1531 | - | - | - | - | - |
836
+ | 3.5714 | 225 | 1.2408 | - | - | - | - | - |
837
+ | 3.6508 | 230 | 0.8085 | - | - | - | - | - |
838
+ | 3.7302 | 235 | 1.1195 | - | - | - | - | - |
839
+ | 3.8095 | 240 | 1.1843 | - | - | - | - | - |
840
+ | 3.8889 | 245 | 0.7176 | - | - | - | - | - |
841
+ | 3.9683 | 250 | 1.1715 | - | - | - | - | - |
842
+ | 4.0 | 252 | - | 0.9244 | 0.9287 | 0.9251 | 0.9199 | 0.9300 |
843
+ | 4.0476 | 255 | 1.3187 | - | - | - | - | - |
844
+ | 4.1270 | 260 | 0.2891 | - | - | - | - | - |
845
+ | 4.2063 | 265 | 1.5887 | - | - | - | - | - |
846
+ | 4.2857 | 270 | 1.1227 | - | - | - | - | - |
847
+ | 4.3651 | 275 | 1.5385 | - | - | - | - | - |
848
+ | 4.4444 | 280 | 0.4732 | - | - | - | - | - |
849
+ | 4.5238 | 285 | 1.2039 | - | - | - | - | - |
850
+ | 4.6032 | 290 | 1.0755 | - | - | - | - | - |
851
+ | 4.6825 | 295 | 1.5345 | - | - | - | - | - |
852
+ | 4.7619 | 300 | 1.4255 | - | - | - | - | - |
853
+ | 4.8413 | 305 | 1.7436 | - | - | - | - | - |
854
+ | 4.9206 | 310 | 0.9408 | - | - | - | - | - |
855
+ | **5.0** | **315** | **0.7724** | **0.9269** | **0.9277** | **0.9277** | **0.9186** | **0.9302** |
856
+
857
+ * The bold row denotes the saved checkpoint.
858
+
859
+ ### Framework Versions
860
+ - Python: 3.10.12
861
+ - Sentence Transformers: 3.0.1
862
+ - Transformers: 4.42.4
863
+ - PyTorch: 2.3.1+cu121
864
+ - Accelerate: 0.32.1
865
+ - Datasets: 2.21.0
866
+ - Tokenizers: 0.19.1
867
+
868
+ ## Citation
869
+
870
+ ### BibTeX
871
+
872
+ #### Sentence Transformers
873
+ ```bibtex
874
+ @inproceedings{reimers-2019-sentence-bert,
875
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
876
+ author = "Reimers, Nils and Gurevych, Iryna",
877
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
878
+ month = "11",
879
+ year = "2019",
880
+ publisher = "Association for Computational Linguistics",
881
+ url = "https://arxiv.org/abs/1908.10084",
882
+ }
883
+ ```
884
+
885
+ #### MatryoshkaLoss
886
+ ```bibtex
887
+ @misc{kusupati2024matryoshka,
888
+ title={Matryoshka Representation Learning},
889
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
890
+ year={2024},
891
+ eprint={2205.13147},
892
+ archivePrefix={arXiv},
893
+ primaryClass={cs.LG}
894
+ }
895
+ ```
896
+
897
+ #### MultipleNegativesRankingLoss
898
+ ```bibtex
899
+ @misc{henderson2017efficient,
900
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
901
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
902
+ year={2017},
903
+ eprint={1705.00652},
904
+ archivePrefix={arXiv},
905
+ primaryClass={cs.CL}
906
+ }
907
+ ```
908
+
909
+ <!--
910
+ ## Glossary
911
+
912
+ *Clearly define terms in order to be accessible across audiences.*
913
+ -->
914
+
915
+ <!--
916
+ ## Model Card Authors
917
+
918
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
919
+ -->
920
+
921
+ <!--
922
+ ## Model Card Contact
923
+
924
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
925
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "fine-tuned-matryoshka-500",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.4",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9f7fc7e4b030276e7f59dbcd4b900ace97b92902dd41d969b5dc88b9b2e306
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff