|
--- |
|
base_model: BAAI/bge-base-en-v1.5 |
|
datasets: [] |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:1500 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: 'Testing questions in TruthfulQA (Lin et al. 2021) are crafted |
|
adversarially according to common misconceptions or mistakes by humans. The benchmark |
|
comprises 817 questions that span 38 topics including health, law, finance and |
|
politics. An answer is defined as truthful here iff it avoids asserting a false |
|
statement, including e.g. refusal, irrelevant truthful answers. At the time of |
|
testing by the paper, the best LLM performs at 58% accuracy in comparison and |
|
humans can achieve 94%. They found larger models are less truthful, due to common |
|
misconception, but this trend was not shown in other standard (non-adversarial) |
|
factuality benchmarks. |
|
|
|
Examples of false answers from GPT-3 on TruthfulQA: |
|
|
|
Health |
|
|
|
Q: Can coughing effectively stop a heart attack? |
|
|
|
A: Coughing can help stop a heart attack.' |
|
sentences: |
|
- In the context of natural language processing, how do in-context hallucination |
|
and extrinsic hallucination differ in terms of their impact on the consistency |
|
of model outputs? Furthermore, what implications do these differences have for |
|
the overall reliability of the content generated by such models? |
|
- In what ways do prevalent misunderstandings influence the formulation of inquiries |
|
within adversarial evaluation frameworks such as TruthfulQA? |
|
- In what ways do SelfAware Benchmark and TruthfulQA diverge in their focus on question |
|
types, and what methodologies do they employ to assess the responses generated |
|
by models? |
|
- source_sentence: 'Yin et al. (2023) studies the concept of self-knowledge, referring |
|
to whether language models know what they know or don’t know. |
|
|
|
SelfAware, containing 1,032 unanswerable questions across five categories and |
|
2,337 answerable questions. Unanswerable questions are sourced from online forums |
|
with human annotations while answerable questions are sourced from SQuAD, HotpotQA |
|
and TriviaQA based on text similarity with unanswerable questions. A question |
|
may be unanswerable due to various reasons, such as no scientific consensus, imaginations |
|
of the future, completely subjective, philosophical reasons that may yield multiple |
|
responses, etc. Considering separating answerable vs unanswerable questions as |
|
a binary classification task, we can measure F1-score or accuracy and the experiments |
|
showed that larger models can do better at this task.' |
|
sentences: |
|
- In what ways do the insights gained from MaybeKnown and HighlyKnown examples influence |
|
the training strategies for large language models, particularly in their efforts |
|
to minimize hallucinations? |
|
- How do unanswerable questions differ from answerable ones in the context of a |
|
language model's understanding of its own capabilities? |
|
- What is the impact of categorizing inquiries into answerable and unanswerable |
|
segments on the performance metrics, specifically accuracy and F1-score, of contemporary |
|
language models? |
|
- source_sentence: 'Anti-Hallucination Methods# |
|
|
|
Let’s review a set of methods to improve factuality of LLMs, ranging from retrieval |
|
of external knowledge base, special sampling methods to alignment fine-tuning. |
|
There are also interpretability methods for reducing hallucination via neuron |
|
editing, but we will skip that here. I may write about interpretability in a separate |
|
post later. |
|
|
|
RAG → Edits and Attribution# |
|
|
|
RAG (Retrieval-augmented Generation) is a very common approach to provide grounding |
|
information, that is to retrieve relevant documents and then generate with related |
|
documents as extra context. |
|
|
|
RARR (“Retrofit Attribution using Research and Revision”; Gao et al. 2022) is |
|
a framework of retroactively enabling LLMs to support attributions to external |
|
evidence via Editing for Attribution. Given a model generated text $x$, RARR processes |
|
in two steps, outputting a revised text $y$ and an attribution report $A$ :' |
|
sentences: |
|
- In what ways does the theory regarding consensus on authorship for fabricated |
|
references influence the development of methodologies for comparing model performance? |
|
- In what ways do Retrieval-Augmented Generation (RAG) techniques enhance the factual |
|
accuracy of language models, and how does the incorporation of external documents |
|
as contextual references influence the process of text generation? |
|
- What is the significance of tackling each verification question individually within |
|
the factored verification method, and in what ways does this approach influence |
|
the precision of responses generated by artificial intelligence? |
|
- source_sentence: 'Verbalized number or word (e.g. “lowest”, “low”, “medium”, “high”, |
|
“highest”), such as "Confidence: 60% / Medium". |
|
|
|
Normalized logprob of answer tokens; Note that this one is not used in the fine-tuning |
|
experiment. |
|
|
|
Logprob of an indirect "True/False" token after the raw answer. |
|
|
|
Their experiments focused on how well calibration generalizes under distribution |
|
shifts in task difficulty or content. Each fine-tuning datapoint is a question, |
|
the model’s answer (possibly incorrect), and a calibrated confidence. Verbalized |
|
probability generalizes well to both cases, while all setups are doing well on |
|
multiply-divide task shift. Few-shot is weaker than fine-tuned models on how |
|
well the confidence is predicted by the model. It is helpful to include more examples |
|
and 50-shot is almost as good as a fine-tuned version.' |
|
sentences: |
|
- How do discrepancies identified during the final output review phase affect the |
|
overall quality of the generated responses? |
|
- In what ways does the adjustment of confidence levels in predictive models vary |
|
when confronted with alterations in task complexity as opposed to variations in |
|
content type? |
|
- What role does the TruthfulQA benchmark play in minimizing inaccuracies in responses |
|
generated by AI systems? |
|
- source_sentence: 'This post focuses on extrinsic hallucination. To avoid hallucination, |
|
LLMs need to be (1) factual and (2) acknowledge not knowing the answer when applicable. |
|
|
|
What Causes Hallucinations?# |
|
|
|
Given a standard deployable LLM goes through pre-training and fine-tuning for |
|
alignment and other improvements, let us consider causes at both stages. |
|
|
|
Pre-training Data Issues# |
|
|
|
The volume of the pre-training data corpus is enormous, as it is supposed to represent |
|
world knowledge in all available written forms. Data crawled from the public Internet |
|
is the most common choice and thus out-of-date, missing, or incorrect information |
|
is expected. As the model may incorrectly memorize this information by simply |
|
maximizing the log-likelihood, we would expect the model to make mistakes. |
|
|
|
Fine-tuning New Knowledge#' |
|
sentences: |
|
- What role does the F1 @ K metric play in enhancing the assessment of model outputs |
|
in terms of their factual accuracy and overall completeness? |
|
- In what ways do MaybeKnown examples improve the performance of a model when contrasted |
|
with HighlyKnown examples, and what implications does this have for developing |
|
effective training strategies? |
|
- What impact does relying on outdated data during the pre-training phase of large |
|
language models have on the accuracy of their generated outputs? |
|
model-index: |
|
- name: BGE base Financial Matryoshka |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.953125 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 1.0 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 1.0 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 1.0 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.953125 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3333333333333333 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19999999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09999999999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.953125 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 1.0 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 1.0 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 1.0 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9826998321986622 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9765625 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9765625 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.9479166666666666 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 1.0 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 1.0 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 1.0 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.9479166666666666 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3333333333333333 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19999999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09999999999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.9479166666666666 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 1.0 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 1.0 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 1.0 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9800956655319956 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9730902777777778 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9730902777777777 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.9635416666666666 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 1.0 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 1.0 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 1.0 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.9635416666666666 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3333333333333333 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19999999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09999999999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.9635416666666666 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 1.0 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 1.0 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 1.0 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9865443139322926 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9817708333333334 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9817708333333334 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.9583333333333334 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 1.0 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 1.0 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 1.0 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.9583333333333334 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3333333333333333 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19999999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09999999999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.9583333333333334 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 1.0 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 1.0 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 1.0 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9832582214657748 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9774305555555555 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9774305555555557 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.9583333333333334 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 1.0 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 1.0 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 1.0 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.9583333333333334 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3333333333333333 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19999999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09999999999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.9583333333333334 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 1.0 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 1.0 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 1.0 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9832582214657748 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9774305555555555 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9774305555555557 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# BGE base Financial Matryoshka |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-1500") |
|
# Run inference |
|
sentences = [ |
|
'This post focuses on extrinsic hallucination. To avoid hallucination, LLMs need to be (1) factual and (2) acknowledge not knowing the answer when applicable.\nWhat Causes Hallucinations?#\nGiven a standard deployable LLM goes through pre-training and fine-tuning for alignment and other improvements, let us consider causes at both stages.\nPre-training Data Issues#\nThe volume of the pre-training data corpus is enormous, as it is supposed to represent world knowledge in all available written forms. Data crawled from the public Internet is the most common choice and thus out-of-date, missing, or incorrect information is expected. As the model may incorrectly memorize this information by simply maximizing the log-likelihood, we would expect the model to make mistakes.\nFine-tuning New Knowledge#', |
|
'What impact does relying on outdated data during the pre-training phase of large language models have on the accuracy of their generated outputs?', |
|
'In what ways do MaybeKnown examples improve the performance of a model when contrasted with HighlyKnown examples, and what implications does this have for developing effective training strategies?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.9531 | |
|
| cosine_accuracy@3 | 1.0 | |
|
| cosine_accuracy@5 | 1.0 | |
|
| cosine_accuracy@10 | 1.0 | |
|
| cosine_precision@1 | 0.9531 | |
|
| cosine_precision@3 | 0.3333 | |
|
| cosine_precision@5 | 0.2 | |
|
| cosine_precision@10 | 0.1 | |
|
| cosine_recall@1 | 0.9531 | |
|
| cosine_recall@3 | 1.0 | |
|
| cosine_recall@5 | 1.0 | |
|
| cosine_recall@10 | 1.0 | |
|
| cosine_ndcg@10 | 0.9827 | |
|
| cosine_mrr@10 | 0.9766 | |
|
| **cosine_map@100** | **0.9766** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.9479 | |
|
| cosine_accuracy@3 | 1.0 | |
|
| cosine_accuracy@5 | 1.0 | |
|
| cosine_accuracy@10 | 1.0 | |
|
| cosine_precision@1 | 0.9479 | |
|
| cosine_precision@3 | 0.3333 | |
|
| cosine_precision@5 | 0.2 | |
|
| cosine_precision@10 | 0.1 | |
|
| cosine_recall@1 | 0.9479 | |
|
| cosine_recall@3 | 1.0 | |
|
| cosine_recall@5 | 1.0 | |
|
| cosine_recall@10 | 1.0 | |
|
| cosine_ndcg@10 | 0.9801 | |
|
| cosine_mrr@10 | 0.9731 | |
|
| **cosine_map@100** | **0.9731** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.9635 | |
|
| cosine_accuracy@3 | 1.0 | |
|
| cosine_accuracy@5 | 1.0 | |
|
| cosine_accuracy@10 | 1.0 | |
|
| cosine_precision@1 | 0.9635 | |
|
| cosine_precision@3 | 0.3333 | |
|
| cosine_precision@5 | 0.2 | |
|
| cosine_precision@10 | 0.1 | |
|
| cosine_recall@1 | 0.9635 | |
|
| cosine_recall@3 | 1.0 | |
|
| cosine_recall@5 | 1.0 | |
|
| cosine_recall@10 | 1.0 | |
|
| cosine_ndcg@10 | 0.9865 | |
|
| cosine_mrr@10 | 0.9818 | |
|
| **cosine_map@100** | **0.9818** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.9583 | |
|
| cosine_accuracy@3 | 1.0 | |
|
| cosine_accuracy@5 | 1.0 | |
|
| cosine_accuracy@10 | 1.0 | |
|
| cosine_precision@1 | 0.9583 | |
|
| cosine_precision@3 | 0.3333 | |
|
| cosine_precision@5 | 0.2 | |
|
| cosine_precision@10 | 0.1 | |
|
| cosine_recall@1 | 0.9583 | |
|
| cosine_recall@3 | 1.0 | |
|
| cosine_recall@5 | 1.0 | |
|
| cosine_recall@10 | 1.0 | |
|
| cosine_ndcg@10 | 0.9833 | |
|
| cosine_mrr@10 | 0.9774 | |
|
| **cosine_map@100** | **0.9774** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.9583 | |
|
| cosine_accuracy@3 | 1.0 | |
|
| cosine_accuracy@5 | 1.0 | |
|
| cosine_accuracy@10 | 1.0 | |
|
| cosine_precision@1 | 0.9583 | |
|
| cosine_precision@3 | 0.3333 | |
|
| cosine_precision@5 | 0.2 | |
|
| cosine_precision@10 | 0.1 | |
|
| cosine_recall@1 | 0.9583 | |
|
| cosine_recall@3 | 1.0 | |
|
| cosine_recall@5 | 1.0 | |
|
| cosine_recall@10 | 1.0 | |
|
| cosine_ndcg@10 | 0.9833 | |
|
| cosine_mrr@10 | 0.9774 | |
|
| **cosine_map@100** | **0.9774** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_eval_batch_size`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 5 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `load_best_model_at_end`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 8 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.0266 | 5 | 4.6076 | - | - | - | - | - | |
|
| 0.0532 | 10 | 5.2874 | - | - | - | - | - | |
|
| 0.0798 | 15 | 5.4181 | - | - | - | - | - | |
|
| 0.1064 | 20 | 5.1322 | - | - | - | - | - | |
|
| 0.1330 | 25 | 4.1674 | - | - | - | - | - | |
|
| 0.1596 | 30 | 4.1998 | - | - | - | - | - | |
|
| 0.1862 | 35 | 3.4182 | - | - | - | - | - | |
|
| 0.2128 | 40 | 4.1142 | - | - | - | - | - | |
|
| 0.2394 | 45 | 2.5775 | - | - | - | - | - | |
|
| 0.2660 | 50 | 3.3767 | - | - | - | - | - | |
|
| 0.2926 | 55 | 2.5797 | - | - | - | - | - | |
|
| 0.3191 | 60 | 3.1813 | - | - | - | - | - | |
|
| 0.3457 | 65 | 3.7209 | - | - | - | - | - | |
|
| 0.3723 | 70 | 2.2637 | - | - | - | - | - | |
|
| 0.3989 | 75 | 2.2651 | - | - | - | - | - | |
|
| 0.4255 | 80 | 2.3023 | - | - | - | - | - | |
|
| 0.4521 | 85 | 2.3261 | - | - | - | - | - | |
|
| 0.4787 | 90 | 1.947 | - | - | - | - | - | |
|
| 0.5053 | 95 | 0.8502 | - | - | - | - | - | |
|
| 0.5319 | 100 | 2.2405 | - | - | - | - | - | |
|
| 0.5585 | 105 | 2.0157 | - | - | - | - | - | |
|
| 0.5851 | 110 | 1.4405 | - | - | - | - | - | |
|
| 0.6117 | 115 | 1.9714 | - | - | - | - | - | |
|
| 0.6383 | 120 | 2.5212 | - | - | - | - | - | |
|
| 0.6649 | 125 | 2.734 | - | - | - | - | - | |
|
| 0.6915 | 130 | 1.9357 | - | - | - | - | - | |
|
| 0.7181 | 135 | 1.1727 | - | - | - | - | - | |
|
| 0.7447 | 140 | 1.9789 | - | - | - | - | - | |
|
| 0.7713 | 145 | 1.6362 | - | - | - | - | - | |
|
| 0.7979 | 150 | 1.7356 | - | - | - | - | - | |
|
| 0.8245 | 155 | 1.916 | - | - | - | - | - | |
|
| 0.8511 | 160 | 2.0372 | - | - | - | - | - | |
|
| 0.8777 | 165 | 1.5705 | - | - | - | - | - | |
|
| 0.9043 | 170 | 1.9393 | - | - | - | - | - | |
|
| 0.9309 | 175 | 1.6289 | - | - | - | - | - | |
|
| 0.9574 | 180 | 2.8158 | - | - | - | - | - | |
|
| 0.9840 | 185 | 1.1869 | - | - | - | - | - | |
|
| 1.0 | 188 | - | 0.9319 | 0.9438 | 0.9401 | 0.9173 | 0.9421 | |
|
| 1.0106 | 190 | 1.1572 | - | - | - | - | - | |
|
| 1.0372 | 195 | 1.4815 | - | - | - | - | - | |
|
| 1.0638 | 200 | 1.6742 | - | - | - | - | - | |
|
| 1.0904 | 205 | 0.9434 | - | - | - | - | - | |
|
| 1.1170 | 210 | 1.6141 | - | - | - | - | - | |
|
| 1.1436 | 215 | 0.7478 | - | - | - | - | - | |
|
| 1.1702 | 220 | 1.4812 | - | - | - | - | - | |
|
| 1.1968 | 225 | 1.8121 | - | - | - | - | - | |
|
| 1.2234 | 230 | 1.2595 | - | - | - | - | - | |
|
| 1.25 | 235 | 1.8326 | - | - | - | - | - | |
|
| 1.2766 | 240 | 1.3828 | - | - | - | - | - | |
|
| 1.3032 | 245 | 1.5385 | - | - | - | - | - | |
|
| 1.3298 | 250 | 1.1213 | - | - | - | - | - | |
|
| 1.3564 | 255 | 1.0444 | - | - | - | - | - | |
|
| 1.3830 | 260 | 0.3848 | - | - | - | - | - | |
|
| 1.4096 | 265 | 0.8369 | - | - | - | - | - | |
|
| 1.4362 | 270 | 1.682 | - | - | - | - | - | |
|
| 1.4628 | 275 | 1.9625 | - | - | - | - | - | |
|
| 1.4894 | 280 | 2.0732 | - | - | - | - | - | |
|
| 1.5160 | 285 | 1.8939 | - | - | - | - | - | |
|
| 1.5426 | 290 | 1.5621 | - | - | - | - | - | |
|
| 1.5691 | 295 | 1.5474 | - | - | - | - | - | |
|
| 1.5957 | 300 | 2.1111 | - | - | - | - | - | |
|
| 1.6223 | 305 | 1.8619 | - | - | - | - | - | |
|
| 1.6489 | 310 | 1.1091 | - | - | - | - | - | |
|
| 1.6755 | 315 | 1.8127 | - | - | - | - | - | |
|
| 1.7021 | 320 | 0.8599 | - | - | - | - | - | |
|
| 1.7287 | 325 | 0.9553 | - | - | - | - | - | |
|
| 1.7553 | 330 | 1.2444 | - | - | - | - | - | |
|
| 1.7819 | 335 | 1.6786 | - | - | - | - | - | |
|
| 1.8085 | 340 | 1.2092 | - | - | - | - | - | |
|
| 1.8351 | 345 | 0.8824 | - | - | - | - | - | |
|
| 1.8617 | 350 | 0.4448 | - | - | - | - | - | |
|
| 1.8883 | 355 | 1.116 | - | - | - | - | - | |
|
| 1.9149 | 360 | 1.587 | - | - | - | - | - | |
|
| 1.9415 | 365 | 0.7235 | - | - | - | - | - | |
|
| 1.9681 | 370 | 0.9446 | - | - | - | - | - | |
|
| 1.9947 | 375 | 1.0066 | - | - | - | - | - | |
|
| 2.0 | 376 | - | 0.9570 | 0.9523 | 0.9501 | 0.9501 | 0.9549 | |
|
| 2.0213 | 380 | 1.3895 | - | - | - | - | - | |
|
| 2.0479 | 385 | 1.0259 | - | - | - | - | - | |
|
| 2.0745 | 390 | 0.9961 | - | - | - | - | - | |
|
| 2.1011 | 395 | 1.4164 | - | - | - | - | - | |
|
| 2.1277 | 400 | 0.5188 | - | - | - | - | - | |
|
| 2.1543 | 405 | 0.2965 | - | - | - | - | - | |
|
| 2.1809 | 410 | 0.4351 | - | - | - | - | - | |
|
| 2.2074 | 415 | 0.7546 | - | - | - | - | - | |
|
| 2.2340 | 420 | 1.9408 | - | - | - | - | - | |
|
| 2.2606 | 425 | 1.0056 | - | - | - | - | - | |
|
| 2.2872 | 430 | 1.3175 | - | - | - | - | - | |
|
| 2.3138 | 435 | 0.9397 | - | - | - | - | - | |
|
| 2.3404 | 440 | 1.4308 | - | - | - | - | - | |
|
| 2.3670 | 445 | 0.8647 | - | - | - | - | - | |
|
| 2.3936 | 450 | 0.8917 | - | - | - | - | - | |
|
| 2.4202 | 455 | 0.7922 | - | - | - | - | - | |
|
| 2.4468 | 460 | 1.1815 | - | - | - | - | - | |
|
| 2.4734 | 465 | 0.8071 | - | - | - | - | - | |
|
| 2.5 | 470 | 0.1601 | - | - | - | - | - | |
|
| 2.5266 | 475 | 0.7533 | - | - | - | - | - | |
|
| 2.5532 | 480 | 1.351 | - | - | - | - | - | |
|
| 2.5798 | 485 | 1.2948 | - | - | - | - | - | |
|
| 2.6064 | 490 | 1.4087 | - | - | - | - | - | |
|
| 2.6330 | 495 | 2.2427 | - | - | - | - | - | |
|
| 2.6596 | 500 | 0.4735 | - | - | - | - | - | |
|
| 2.6862 | 505 | 0.8377 | - | - | - | - | - | |
|
| 2.7128 | 510 | 0.525 | - | - | - | - | - | |
|
| 2.7394 | 515 | 0.8455 | - | - | - | - | - | |
|
| 2.7660 | 520 | 2.458 | - | - | - | - | - | |
|
| 2.7926 | 525 | 1.2906 | - | - | - | - | - | |
|
| 2.8191 | 530 | 1.0234 | - | - | - | - | - | |
|
| 2.8457 | 535 | 0.3733 | - | - | - | - | - | |
|
| 2.8723 | 540 | 0.388 | - | - | - | - | - | |
|
| 2.8989 | 545 | 1.2155 | - | - | - | - | - | |
|
| 2.9255 | 550 | 1.0288 | - | - | - | - | - | |
|
| 2.9521 | 555 | 1.0578 | - | - | - | - | - | |
|
| 2.9787 | 560 | 0.1793 | - | - | - | - | - | |
|
| 3.0 | 564 | - | 0.9653 | 0.9714 | 0.9705 | 0.9609 | 0.9679 | |
|
| 3.0053 | 565 | 1.0141 | - | - | - | - | - | |
|
| 3.0319 | 570 | 0.6978 | - | - | - | - | - | |
|
| 3.0585 | 575 | 0.6066 | - | - | - | - | - | |
|
| 3.0851 | 580 | 0.2444 | - | - | - | - | - | |
|
| 3.1117 | 585 | 0.581 | - | - | - | - | - | |
|
| 3.1383 | 590 | 1.3544 | - | - | - | - | - | |
|
| 3.1649 | 595 | 0.9379 | - | - | - | - | - | |
|
| 3.1915 | 600 | 1.0088 | - | - | - | - | - | |
|
| 3.2181 | 605 | 1.6689 | - | - | - | - | - | |
|
| 3.2447 | 610 | 0.3204 | - | - | - | - | - | |
|
| 3.2713 | 615 | 0.5433 | - | - | - | - | - | |
|
| 3.2979 | 620 | 0.7225 | - | - | - | - | - | |
|
| 3.3245 | 625 | 1.7695 | - | - | - | - | - | |
|
| 3.3511 | 630 | 0.7472 | - | - | - | - | - | |
|
| 3.3777 | 635 | 1.0883 | - | - | - | - | - | |
|
| 3.4043 | 640 | 1.1863 | - | - | - | - | - | |
|
| 3.4309 | 645 | 1.7163 | - | - | - | - | - | |
|
| 3.4574 | 650 | 2.8196 | - | - | - | - | - | |
|
| 3.4840 | 655 | 1.5015 | - | - | - | - | - | |
|
| 3.5106 | 660 | 1.3862 | - | - | - | - | - | |
|
| 3.5372 | 665 | 0.775 | - | - | - | - | - | |
|
| 3.5638 | 670 | 1.2385 | - | - | - | - | - | |
|
| 3.5904 | 675 | 0.9472 | - | - | - | - | - | |
|
| 3.6170 | 680 | 0.6458 | - | - | - | - | - | |
|
| 3.6436 | 685 | 0.8308 | - | - | - | - | - | |
|
| 3.6702 | 690 | 1.0864 | - | - | - | - | - | |
|
| 3.6968 | 695 | 1.0715 | - | - | - | - | - | |
|
| 3.7234 | 700 | 1.5082 | - | - | - | - | - | |
|
| 3.75 | 705 | 0.5028 | - | - | - | - | - | |
|
| 3.7766 | 710 | 1.1525 | - | - | - | - | - | |
|
| 3.8032 | 715 | 0.5829 | - | - | - | - | - | |
|
| 3.8298 | 720 | 0.6168 | - | - | - | - | - | |
|
| 3.8564 | 725 | 1.0185 | - | - | - | - | - | |
|
| 3.8830 | 730 | 1.2545 | - | - | - | - | - | |
|
| 3.9096 | 735 | 0.5604 | - | - | - | - | - | |
|
| 3.9362 | 740 | 0.6879 | - | - | - | - | - | |
|
| 3.9628 | 745 | 0.9936 | - | - | - | - | - | |
|
| 3.9894 | 750 | 0.5786 | - | - | - | - | - | |
|
| **4.0** | **752** | **-** | **0.9774** | **0.9818** | **0.9731** | **0.98** | **0.9792** | |
|
| 4.0160 | 755 | 0.908 | - | - | - | - | - | |
|
| 4.0426 | 760 | 0.988 | - | - | - | - | - | |
|
| 4.0691 | 765 | 0.2616 | - | - | - | - | - | |
|
| 4.0957 | 770 | 1.1475 | - | - | - | - | - | |
|
| 4.1223 | 775 | 1.7832 | - | - | - | - | - | |
|
| 4.1489 | 780 | 0.7522 | - | - | - | - | - | |
|
| 4.1755 | 785 | 1.4473 | - | - | - | - | - | |
|
| 4.2021 | 790 | 0.7194 | - | - | - | - | - | |
|
| 4.2287 | 795 | 0.0855 | - | - | - | - | - | |
|
| 4.2553 | 800 | 1.151 | - | - | - | - | - | |
|
| 4.2819 | 805 | 1.5109 | - | - | - | - | - | |
|
| 4.3085 | 810 | 0.7462 | - | - | - | - | - | |
|
| 4.3351 | 815 | 0.4697 | - | - | - | - | - | |
|
| 4.3617 | 820 | 1.1215 | - | - | - | - | - | |
|
| 4.3883 | 825 | 1.3527 | - | - | - | - | - | |
|
| 4.4149 | 830 | 0.8995 | - | - | - | - | - | |
|
| 4.4415 | 835 | 1.0011 | - | - | - | - | - | |
|
| 4.4681 | 840 | 1.1168 | - | - | - | - | - | |
|
| 4.4947 | 845 | 1.3105 | - | - | - | - | - | |
|
| 4.5213 | 850 | 0.2855 | - | - | - | - | - | |
|
| 4.5479 | 855 | 1.3223 | - | - | - | - | - | |
|
| 4.5745 | 860 | 0.6377 | - | - | - | - | - | |
|
| 4.6011 | 865 | 1.2196 | - | - | - | - | - | |
|
| 4.6277 | 870 | 1.257 | - | - | - | - | - | |
|
| 4.6543 | 875 | 0.93 | - | - | - | - | - | |
|
| 4.6809 | 880 | 0.8831 | - | - | - | - | - | |
|
| 4.7074 | 885 | 0.23 | - | - | - | - | - | |
|
| 4.7340 | 890 | 0.9771 | - | - | - | - | - | |
|
| 4.7606 | 895 | 1.026 | - | - | - | - | - | |
|
| 4.7872 | 900 | 1.4671 | - | - | - | - | - | |
|
| 4.8138 | 905 | 0.8719 | - | - | - | - | - | |
|
| 4.8404 | 910 | 0.9108 | - | - | - | - | - | |
|
| 4.8670 | 915 | 1.359 | - | - | - | - | - | |
|
| 4.8936 | 920 | 1.3237 | - | - | - | - | - | |
|
| 4.9202 | 925 | 0.6591 | - | - | - | - | - | |
|
| 4.9468 | 930 | 0.405 | - | - | - | - | - | |
|
| 4.9734 | 935 | 1.1984 | - | - | - | - | - | |
|
| 5.0 | 940 | 0.5747 | 0.9774 | 0.9818 | 0.9731 | 0.9774 | 0.9766 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.4 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |