File size: 60,845 Bytes
9cd8d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1500
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'Testing questions in TruthfulQA (Lin et al. 2021) are crafted
    adversarially according to common misconceptions or mistakes by humans. The benchmark
    comprises 817 questions that span 38 topics including health, law, finance and
    politics. An answer is defined as truthful here iff it avoids asserting a false
    statement, including e.g. refusal, irrelevant truthful answers. At the time of
    testing by the paper, the best LLM performs at 58% accuracy in comparison and
    humans can achieve 94%. They found larger models are less truthful, due to common
    misconception, but this trend was not shown in other standard (non-adversarial)
    factuality benchmarks.

    Examples of false answers from GPT-3 on TruthfulQA:

    Health

    Q: Can coughing effectively stop a heart attack?

    A: Coughing can help stop a heart attack.'
  sentences:
  - In the context of natural language processing, how do in-context hallucination
    and extrinsic hallucination differ in terms of their impact on the consistency
    of model outputs? Furthermore, what implications do these differences have for
    the overall reliability of the content generated by such models?
  - In what ways do prevalent misunderstandings influence the formulation of inquiries
    within adversarial evaluation frameworks such as TruthfulQA?
  - In what ways do SelfAware Benchmark and TruthfulQA diverge in their focus on question
    types, and what methodologies do they employ to assess the responses generated
    by models?
- source_sentence: 'Yin et al. (2023) studies the concept of self-knowledge, referring
    to whether language models know what they know or don’t know.

    SelfAware, containing 1,032 unanswerable questions across five categories and
    2,337 answerable questions. Unanswerable questions are sourced from online forums
    with human annotations while answerable questions are sourced from SQuAD, HotpotQA
    and TriviaQA based on text similarity with unanswerable questions. A question
    may be unanswerable due to various reasons, such as no scientific consensus, imaginations
    of the future, completely subjective, philosophical reasons that may yield multiple
    responses, etc. Considering separating answerable vs unanswerable questions as
    a binary classification task, we can measure F1-score or accuracy and the experiments
    showed that larger models can do better at this task.'
  sentences:
  - In what ways do the insights gained from MaybeKnown and HighlyKnown examples influence
    the training strategies for large language models, particularly in their efforts
    to minimize hallucinations?
  - How do unanswerable questions differ from answerable ones in the context of a
    language model's understanding of its own capabilities?
  - What is the impact of categorizing inquiries into answerable and unanswerable
    segments on the performance metrics, specifically accuracy and F1-score, of contemporary
    language models?
- source_sentence: 'Anti-Hallucination Methods#

    Let’s review a set of methods to improve factuality of LLMs, ranging from retrieval
    of external knowledge base, special sampling methods to alignment fine-tuning.
    There are also interpretability methods for reducing hallucination via neuron
    editing, but we will skip that here. I may write about interpretability in a separate
    post later.

    RAG → Edits and Attribution#

    RAG (Retrieval-augmented Generation) is a very common approach to provide grounding
    information, that is to retrieve relevant documents and then generate with related
    documents as extra context.

    RARR (“Retrofit Attribution using Research and Revision”; Gao et al. 2022) is
    a framework of retroactively enabling LLMs to support attributions to external
    evidence via Editing for Attribution. Given a model generated text $x$, RARR processes
    in two steps, outputting a revised text $y$ and an attribution report $A$ :'
  sentences:
  - In what ways does the theory regarding consensus on authorship for fabricated
    references influence the development of methodologies for comparing model performance?
  - In what ways do Retrieval-Augmented Generation (RAG) techniques enhance the factual
    accuracy of language models, and how does the incorporation of external documents
    as contextual references influence the process of text generation?
  - What is the significance of tackling each verification question individually within
    the factored verification method, and in what ways does this approach influence
    the precision of responses generated by artificial intelligence?
- source_sentence: 'Verbalized number or word (e.g. “lowest”, “low”, “medium”, “high”,
    “highest”), such as "Confidence: 60% / Medium".

    Normalized logprob of answer tokens; Note that this one is not used in the fine-tuning
    experiment.

    Logprob of an indirect "True/False" token after the raw answer.

    Their experiments focused on how well calibration generalizes under distribution
    shifts in task difficulty or content. Each fine-tuning datapoint is a question,
    the model’s answer (possibly incorrect), and a calibrated confidence. Verbalized
    probability generalizes well to both cases, while all setups are doing well on
    multiply-divide task shift.  Few-shot is weaker than fine-tuned models on how
    well the confidence is predicted by the model. It is helpful to include more examples
    and 50-shot is almost as good as a fine-tuned version.'
  sentences:
  - How do discrepancies identified during the final output review phase affect the
    overall quality of the generated responses?
  - In what ways does the adjustment of confidence levels in predictive models vary
    when confronted with alterations in task complexity as opposed to variations in
    content type?
  - What role does the TruthfulQA benchmark play in minimizing inaccuracies in responses
    generated by AI systems?
- source_sentence: 'This post focuses on extrinsic hallucination. To avoid hallucination,
    LLMs need to be (1) factual and (2) acknowledge not knowing the answer when applicable.

    What Causes Hallucinations?#

    Given a standard deployable LLM goes through pre-training and fine-tuning for
    alignment and other improvements, let us consider causes at both stages.

    Pre-training Data Issues#

    The volume of the pre-training data corpus is enormous, as it is supposed to represent
    world knowledge in all available written forms. Data crawled from the public Internet
    is the most common choice and thus out-of-date, missing, or incorrect information
    is expected. As the model may incorrectly memorize this information by simply
    maximizing the log-likelihood, we would expect the model to make mistakes.

    Fine-tuning New Knowledge#'
  sentences:
  - What role does the F1 @ K metric play in enhancing the assessment of model outputs
    in terms of their factual accuracy and overall completeness?
  - In what ways do MaybeKnown examples improve the performance of a model when contrasted
    with HighlyKnown examples, and what implications does this have for developing
    effective training strategies?
  - What impact does relying on outdated data during the pre-training phase of large
    language models have on the accuracy of their generated outputs?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.953125
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.953125
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19999999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09999999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.953125
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9826998321986622
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9765625
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9765625
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.9479166666666666
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9479166666666666
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19999999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09999999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.9479166666666666
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9800956655319956
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9730902777777778
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9730902777777777
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.9635416666666666
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9635416666666666
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19999999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09999999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.9635416666666666
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9865443139322926
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9817708333333334
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9817708333333334
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.9583333333333334
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9583333333333334
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19999999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09999999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.9583333333333334
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9832582214657748
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9774305555555555
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9774305555555557
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.9583333333333334
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9583333333333334
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19999999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09999999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.9583333333333334
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9832582214657748
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9774305555555555
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9774305555555557
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-1500")
# Run inference
sentences = [
    'This post focuses on extrinsic hallucination. To avoid hallucination, LLMs need to be (1) factual and (2) acknowledge not knowing the answer when applicable.\nWhat Causes Hallucinations?#\nGiven a standard deployable LLM goes through pre-training and fine-tuning for alignment and other improvements, let us consider causes at both stages.\nPre-training Data Issues#\nThe volume of the pre-training data corpus is enormous, as it is supposed to represent world knowledge in all available written forms. Data crawled from the public Internet is the most common choice and thus out-of-date, missing, or incorrect information is expected. As the model may incorrectly memorize this information by simply maximizing the log-likelihood, we would expect the model to make mistakes.\nFine-tuning New Knowledge#',
    'What impact does relying on outdated data during the pre-training phase of large language models have on the accuracy of their generated outputs?',
    'In what ways do MaybeKnown examples improve the performance of a model when contrasted with HighlyKnown examples, and what implications does this have for developing effective training strategies?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.9531     |
| cosine_accuracy@3   | 1.0        |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.9531     |
| cosine_precision@3  | 0.3333     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.9531     |
| cosine_recall@3     | 1.0        |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| cosine_ndcg@10      | 0.9827     |
| cosine_mrr@10       | 0.9766     |
| **cosine_map@100**  | **0.9766** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.9479     |
| cosine_accuracy@3   | 1.0        |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.9479     |
| cosine_precision@3  | 0.3333     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.9479     |
| cosine_recall@3     | 1.0        |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| cosine_ndcg@10      | 0.9801     |
| cosine_mrr@10       | 0.9731     |
| **cosine_map@100**  | **0.9731** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.9635     |
| cosine_accuracy@3   | 1.0        |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.9635     |
| cosine_precision@3  | 0.3333     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.9635     |
| cosine_recall@3     | 1.0        |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| cosine_ndcg@10      | 0.9865     |
| cosine_mrr@10       | 0.9818     |
| **cosine_map@100**  | **0.9818** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.9583     |
| cosine_accuracy@3   | 1.0        |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.9583     |
| cosine_precision@3  | 0.3333     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.9583     |
| cosine_recall@3     | 1.0        |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| cosine_ndcg@10      | 0.9833     |
| cosine_mrr@10       | 0.9774     |
| **cosine_map@100**  | **0.9774** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.9583     |
| cosine_accuracy@3   | 1.0        |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.9583     |
| cosine_precision@3  | 0.3333     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.9583     |
| cosine_recall@3     | 1.0        |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| cosine_ndcg@10      | 0.9833     |
| cosine_mrr@10       | 0.9774     |
| **cosine_map@100**  | **0.9774** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch   | Step    | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.0266  | 5       | 4.6076        | -                      | -                      | -                      | -                     | -                      |
| 0.0532  | 10      | 5.2874        | -                      | -                      | -                      | -                     | -                      |
| 0.0798  | 15      | 5.4181        | -                      | -                      | -                      | -                     | -                      |
| 0.1064  | 20      | 5.1322        | -                      | -                      | -                      | -                     | -                      |
| 0.1330  | 25      | 4.1674        | -                      | -                      | -                      | -                     | -                      |
| 0.1596  | 30      | 4.1998        | -                      | -                      | -                      | -                     | -                      |
| 0.1862  | 35      | 3.4182        | -                      | -                      | -                      | -                     | -                      |
| 0.2128  | 40      | 4.1142        | -                      | -                      | -                      | -                     | -                      |
| 0.2394  | 45      | 2.5775        | -                      | -                      | -                      | -                     | -                      |
| 0.2660  | 50      | 3.3767        | -                      | -                      | -                      | -                     | -                      |
| 0.2926  | 55      | 2.5797        | -                      | -                      | -                      | -                     | -                      |
| 0.3191  | 60      | 3.1813        | -                      | -                      | -                      | -                     | -                      |
| 0.3457  | 65      | 3.7209        | -                      | -                      | -                      | -                     | -                      |
| 0.3723  | 70      | 2.2637        | -                      | -                      | -                      | -                     | -                      |
| 0.3989  | 75      | 2.2651        | -                      | -                      | -                      | -                     | -                      |
| 0.4255  | 80      | 2.3023        | -                      | -                      | -                      | -                     | -                      |
| 0.4521  | 85      | 2.3261        | -                      | -                      | -                      | -                     | -                      |
| 0.4787  | 90      | 1.947         | -                      | -                      | -                      | -                     | -                      |
| 0.5053  | 95      | 0.8502        | -                      | -                      | -                      | -                     | -                      |
| 0.5319  | 100     | 2.2405        | -                      | -                      | -                      | -                     | -                      |
| 0.5585  | 105     | 2.0157        | -                      | -                      | -                      | -                     | -                      |
| 0.5851  | 110     | 1.4405        | -                      | -                      | -                      | -                     | -                      |
| 0.6117  | 115     | 1.9714        | -                      | -                      | -                      | -                     | -                      |
| 0.6383  | 120     | 2.5212        | -                      | -                      | -                      | -                     | -                      |
| 0.6649  | 125     | 2.734         | -                      | -                      | -                      | -                     | -                      |
| 0.6915  | 130     | 1.9357        | -                      | -                      | -                      | -                     | -                      |
| 0.7181  | 135     | 1.1727        | -                      | -                      | -                      | -                     | -                      |
| 0.7447  | 140     | 1.9789        | -                      | -                      | -                      | -                     | -                      |
| 0.7713  | 145     | 1.6362        | -                      | -                      | -                      | -                     | -                      |
| 0.7979  | 150     | 1.7356        | -                      | -                      | -                      | -                     | -                      |
| 0.8245  | 155     | 1.916         | -                      | -                      | -                      | -                     | -                      |
| 0.8511  | 160     | 2.0372        | -                      | -                      | -                      | -                     | -                      |
| 0.8777  | 165     | 1.5705        | -                      | -                      | -                      | -                     | -                      |
| 0.9043  | 170     | 1.9393        | -                      | -                      | -                      | -                     | -                      |
| 0.9309  | 175     | 1.6289        | -                      | -                      | -                      | -                     | -                      |
| 0.9574  | 180     | 2.8158        | -                      | -                      | -                      | -                     | -                      |
| 0.9840  | 185     | 1.1869        | -                      | -                      | -                      | -                     | -                      |
| 1.0     | 188     | -             | 0.9319                 | 0.9438                 | 0.9401                 | 0.9173                | 0.9421                 |
| 1.0106  | 190     | 1.1572        | -                      | -                      | -                      | -                     | -                      |
| 1.0372  | 195     | 1.4815        | -                      | -                      | -                      | -                     | -                      |
| 1.0638  | 200     | 1.6742        | -                      | -                      | -                      | -                     | -                      |
| 1.0904  | 205     | 0.9434        | -                      | -                      | -                      | -                     | -                      |
| 1.1170  | 210     | 1.6141        | -                      | -                      | -                      | -                     | -                      |
| 1.1436  | 215     | 0.7478        | -                      | -                      | -                      | -                     | -                      |
| 1.1702  | 220     | 1.4812        | -                      | -                      | -                      | -                     | -                      |
| 1.1968  | 225     | 1.8121        | -                      | -                      | -                      | -                     | -                      |
| 1.2234  | 230     | 1.2595        | -                      | -                      | -                      | -                     | -                      |
| 1.25    | 235     | 1.8326        | -                      | -                      | -                      | -                     | -                      |
| 1.2766  | 240     | 1.3828        | -                      | -                      | -                      | -                     | -                      |
| 1.3032  | 245     | 1.5385        | -                      | -                      | -                      | -                     | -                      |
| 1.3298  | 250     | 1.1213        | -                      | -                      | -                      | -                     | -                      |
| 1.3564  | 255     | 1.0444        | -                      | -                      | -                      | -                     | -                      |
| 1.3830  | 260     | 0.3848        | -                      | -                      | -                      | -                     | -                      |
| 1.4096  | 265     | 0.8369        | -                      | -                      | -                      | -                     | -                      |
| 1.4362  | 270     | 1.682         | -                      | -                      | -                      | -                     | -                      |
| 1.4628  | 275     | 1.9625        | -                      | -                      | -                      | -                     | -                      |
| 1.4894  | 280     | 2.0732        | -                      | -                      | -                      | -                     | -                      |
| 1.5160  | 285     | 1.8939        | -                      | -                      | -                      | -                     | -                      |
| 1.5426  | 290     | 1.5621        | -                      | -                      | -                      | -                     | -                      |
| 1.5691  | 295     | 1.5474        | -                      | -                      | -                      | -                     | -                      |
| 1.5957  | 300     | 2.1111        | -                      | -                      | -                      | -                     | -                      |
| 1.6223  | 305     | 1.8619        | -                      | -                      | -                      | -                     | -                      |
| 1.6489  | 310     | 1.1091        | -                      | -                      | -                      | -                     | -                      |
| 1.6755  | 315     | 1.8127        | -                      | -                      | -                      | -                     | -                      |
| 1.7021  | 320     | 0.8599        | -                      | -                      | -                      | -                     | -                      |
| 1.7287  | 325     | 0.9553        | -                      | -                      | -                      | -                     | -                      |
| 1.7553  | 330     | 1.2444        | -                      | -                      | -                      | -                     | -                      |
| 1.7819  | 335     | 1.6786        | -                      | -                      | -                      | -                     | -                      |
| 1.8085  | 340     | 1.2092        | -                      | -                      | -                      | -                     | -                      |
| 1.8351  | 345     | 0.8824        | -                      | -                      | -                      | -                     | -                      |
| 1.8617  | 350     | 0.4448        | -                      | -                      | -                      | -                     | -                      |
| 1.8883  | 355     | 1.116         | -                      | -                      | -                      | -                     | -                      |
| 1.9149  | 360     | 1.587         | -                      | -                      | -                      | -                     | -                      |
| 1.9415  | 365     | 0.7235        | -                      | -                      | -                      | -                     | -                      |
| 1.9681  | 370     | 0.9446        | -                      | -                      | -                      | -                     | -                      |
| 1.9947  | 375     | 1.0066        | -                      | -                      | -                      | -                     | -                      |
| 2.0     | 376     | -             | 0.9570                 | 0.9523                 | 0.9501                 | 0.9501                | 0.9549                 |
| 2.0213  | 380     | 1.3895        | -                      | -                      | -                      | -                     | -                      |
| 2.0479  | 385     | 1.0259        | -                      | -                      | -                      | -                     | -                      |
| 2.0745  | 390     | 0.9961        | -                      | -                      | -                      | -                     | -                      |
| 2.1011  | 395     | 1.4164        | -                      | -                      | -                      | -                     | -                      |
| 2.1277  | 400     | 0.5188        | -                      | -                      | -                      | -                     | -                      |
| 2.1543  | 405     | 0.2965        | -                      | -                      | -                      | -                     | -                      |
| 2.1809  | 410     | 0.4351        | -                      | -                      | -                      | -                     | -                      |
| 2.2074  | 415     | 0.7546        | -                      | -                      | -                      | -                     | -                      |
| 2.2340  | 420     | 1.9408        | -                      | -                      | -                      | -                     | -                      |
| 2.2606  | 425     | 1.0056        | -                      | -                      | -                      | -                     | -                      |
| 2.2872  | 430     | 1.3175        | -                      | -                      | -                      | -                     | -                      |
| 2.3138  | 435     | 0.9397        | -                      | -                      | -                      | -                     | -                      |
| 2.3404  | 440     | 1.4308        | -                      | -                      | -                      | -                     | -                      |
| 2.3670  | 445     | 0.8647        | -                      | -                      | -                      | -                     | -                      |
| 2.3936  | 450     | 0.8917        | -                      | -                      | -                      | -                     | -                      |
| 2.4202  | 455     | 0.7922        | -                      | -                      | -                      | -                     | -                      |
| 2.4468  | 460     | 1.1815        | -                      | -                      | -                      | -                     | -                      |
| 2.4734  | 465     | 0.8071        | -                      | -                      | -                      | -                     | -                      |
| 2.5     | 470     | 0.1601        | -                      | -                      | -                      | -                     | -                      |
| 2.5266  | 475     | 0.7533        | -                      | -                      | -                      | -                     | -                      |
| 2.5532  | 480     | 1.351         | -                      | -                      | -                      | -                     | -                      |
| 2.5798  | 485     | 1.2948        | -                      | -                      | -                      | -                     | -                      |
| 2.6064  | 490     | 1.4087        | -                      | -                      | -                      | -                     | -                      |
| 2.6330  | 495     | 2.2427        | -                      | -                      | -                      | -                     | -                      |
| 2.6596  | 500     | 0.4735        | -                      | -                      | -                      | -                     | -                      |
| 2.6862  | 505     | 0.8377        | -                      | -                      | -                      | -                     | -                      |
| 2.7128  | 510     | 0.525         | -                      | -                      | -                      | -                     | -                      |
| 2.7394  | 515     | 0.8455        | -                      | -                      | -                      | -                     | -                      |
| 2.7660  | 520     | 2.458         | -                      | -                      | -                      | -                     | -                      |
| 2.7926  | 525     | 1.2906        | -                      | -                      | -                      | -                     | -                      |
| 2.8191  | 530     | 1.0234        | -                      | -                      | -                      | -                     | -                      |
| 2.8457  | 535     | 0.3733        | -                      | -                      | -                      | -                     | -                      |
| 2.8723  | 540     | 0.388         | -                      | -                      | -                      | -                     | -                      |
| 2.8989  | 545     | 1.2155        | -                      | -                      | -                      | -                     | -                      |
| 2.9255  | 550     | 1.0288        | -                      | -                      | -                      | -                     | -                      |
| 2.9521  | 555     | 1.0578        | -                      | -                      | -                      | -                     | -                      |
| 2.9787  | 560     | 0.1793        | -                      | -                      | -                      | -                     | -                      |
| 3.0     | 564     | -             | 0.9653                 | 0.9714                 | 0.9705                 | 0.9609                | 0.9679                 |
| 3.0053  | 565     | 1.0141        | -                      | -                      | -                      | -                     | -                      |
| 3.0319  | 570     | 0.6978        | -                      | -                      | -                      | -                     | -                      |
| 3.0585  | 575     | 0.6066        | -                      | -                      | -                      | -                     | -                      |
| 3.0851  | 580     | 0.2444        | -                      | -                      | -                      | -                     | -                      |
| 3.1117  | 585     | 0.581         | -                      | -                      | -                      | -                     | -                      |
| 3.1383  | 590     | 1.3544        | -                      | -                      | -                      | -                     | -                      |
| 3.1649  | 595     | 0.9379        | -                      | -                      | -                      | -                     | -                      |
| 3.1915  | 600     | 1.0088        | -                      | -                      | -                      | -                     | -                      |
| 3.2181  | 605     | 1.6689        | -                      | -                      | -                      | -                     | -                      |
| 3.2447  | 610     | 0.3204        | -                      | -                      | -                      | -                     | -                      |
| 3.2713  | 615     | 0.5433        | -                      | -                      | -                      | -                     | -                      |
| 3.2979  | 620     | 0.7225        | -                      | -                      | -                      | -                     | -                      |
| 3.3245  | 625     | 1.7695        | -                      | -                      | -                      | -                     | -                      |
| 3.3511  | 630     | 0.7472        | -                      | -                      | -                      | -                     | -                      |
| 3.3777  | 635     | 1.0883        | -                      | -                      | -                      | -                     | -                      |
| 3.4043  | 640     | 1.1863        | -                      | -                      | -                      | -                     | -                      |
| 3.4309  | 645     | 1.7163        | -                      | -                      | -                      | -                     | -                      |
| 3.4574  | 650     | 2.8196        | -                      | -                      | -                      | -                     | -                      |
| 3.4840  | 655     | 1.5015        | -                      | -                      | -                      | -                     | -                      |
| 3.5106  | 660     | 1.3862        | -                      | -                      | -                      | -                     | -                      |
| 3.5372  | 665     | 0.775         | -                      | -                      | -                      | -                     | -                      |
| 3.5638  | 670     | 1.2385        | -                      | -                      | -                      | -                     | -                      |
| 3.5904  | 675     | 0.9472        | -                      | -                      | -                      | -                     | -                      |
| 3.6170  | 680     | 0.6458        | -                      | -                      | -                      | -                     | -                      |
| 3.6436  | 685     | 0.8308        | -                      | -                      | -                      | -                     | -                      |
| 3.6702  | 690     | 1.0864        | -                      | -                      | -                      | -                     | -                      |
| 3.6968  | 695     | 1.0715        | -                      | -                      | -                      | -                     | -                      |
| 3.7234  | 700     | 1.5082        | -                      | -                      | -                      | -                     | -                      |
| 3.75    | 705     | 0.5028        | -                      | -                      | -                      | -                     | -                      |
| 3.7766  | 710     | 1.1525        | -                      | -                      | -                      | -                     | -                      |
| 3.8032  | 715     | 0.5829        | -                      | -                      | -                      | -                     | -                      |
| 3.8298  | 720     | 0.6168        | -                      | -                      | -                      | -                     | -                      |
| 3.8564  | 725     | 1.0185        | -                      | -                      | -                      | -                     | -                      |
| 3.8830  | 730     | 1.2545        | -                      | -                      | -                      | -                     | -                      |
| 3.9096  | 735     | 0.5604        | -                      | -                      | -                      | -                     | -                      |
| 3.9362  | 740     | 0.6879        | -                      | -                      | -                      | -                     | -                      |
| 3.9628  | 745     | 0.9936        | -                      | -                      | -                      | -                     | -                      |
| 3.9894  | 750     | 0.5786        | -                      | -                      | -                      | -                     | -                      |
| **4.0** | **752** | **-**         | **0.9774**             | **0.9818**             | **0.9731**             | **0.98**              | **0.9792**             |
| 4.0160  | 755     | 0.908         | -                      | -                      | -                      | -                     | -                      |
| 4.0426  | 760     | 0.988         | -                      | -                      | -                      | -                     | -                      |
| 4.0691  | 765     | 0.2616        | -                      | -                      | -                      | -                     | -                      |
| 4.0957  | 770     | 1.1475        | -                      | -                      | -                      | -                     | -                      |
| 4.1223  | 775     | 1.7832        | -                      | -                      | -                      | -                     | -                      |
| 4.1489  | 780     | 0.7522        | -                      | -                      | -                      | -                     | -                      |
| 4.1755  | 785     | 1.4473        | -                      | -                      | -                      | -                     | -                      |
| 4.2021  | 790     | 0.7194        | -                      | -                      | -                      | -                     | -                      |
| 4.2287  | 795     | 0.0855        | -                      | -                      | -                      | -                     | -                      |
| 4.2553  | 800     | 1.151         | -                      | -                      | -                      | -                     | -                      |
| 4.2819  | 805     | 1.5109        | -                      | -                      | -                      | -                     | -                      |
| 4.3085  | 810     | 0.7462        | -                      | -                      | -                      | -                     | -                      |
| 4.3351  | 815     | 0.4697        | -                      | -                      | -                      | -                     | -                      |
| 4.3617  | 820     | 1.1215        | -                      | -                      | -                      | -                     | -                      |
| 4.3883  | 825     | 1.3527        | -                      | -                      | -                      | -                     | -                      |
| 4.4149  | 830     | 0.8995        | -                      | -                      | -                      | -                     | -                      |
| 4.4415  | 835     | 1.0011        | -                      | -                      | -                      | -                     | -                      |
| 4.4681  | 840     | 1.1168        | -                      | -                      | -                      | -                     | -                      |
| 4.4947  | 845     | 1.3105        | -                      | -                      | -                      | -                     | -                      |
| 4.5213  | 850     | 0.2855        | -                      | -                      | -                      | -                     | -                      |
| 4.5479  | 855     | 1.3223        | -                      | -                      | -                      | -                     | -                      |
| 4.5745  | 860     | 0.6377        | -                      | -                      | -                      | -                     | -                      |
| 4.6011  | 865     | 1.2196        | -                      | -                      | -                      | -                     | -                      |
| 4.6277  | 870     | 1.257         | -                      | -                      | -                      | -                     | -                      |
| 4.6543  | 875     | 0.93          | -                      | -                      | -                      | -                     | -                      |
| 4.6809  | 880     | 0.8831        | -                      | -                      | -                      | -                     | -                      |
| 4.7074  | 885     | 0.23          | -                      | -                      | -                      | -                     | -                      |
| 4.7340  | 890     | 0.9771        | -                      | -                      | -                      | -                     | -                      |
| 4.7606  | 895     | 1.026         | -                      | -                      | -                      | -                     | -                      |
| 4.7872  | 900     | 1.4671        | -                      | -                      | -                      | -                     | -                      |
| 4.8138  | 905     | 0.8719        | -                      | -                      | -                      | -                     | -                      |
| 4.8404  | 910     | 0.9108        | -                      | -                      | -                      | -                     | -                      |
| 4.8670  | 915     | 1.359         | -                      | -                      | -                      | -                     | -                      |
| 4.8936  | 920     | 1.3237        | -                      | -                      | -                      | -                     | -                      |
| 4.9202  | 925     | 0.6591        | -                      | -                      | -                      | -                     | -                      |
| 4.9468  | 930     | 0.405         | -                      | -                      | -                      | -                     | -                      |
| 4.9734  | 935     | 1.1984        | -                      | -                      | -                      | -                     | -                      |
| 5.0     | 940     | 0.5747        | 0.9774                 | 0.9818                 | 0.9731                 | 0.9774                | 0.9766                 |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->