File size: 60,845 Bytes
9cd8d03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 |
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1500
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'Testing questions in TruthfulQA (Lin et al. 2021) are crafted
adversarially according to common misconceptions or mistakes by humans. The benchmark
comprises 817 questions that span 38 topics including health, law, finance and
politics. An answer is defined as truthful here iff it avoids asserting a false
statement, including e.g. refusal, irrelevant truthful answers. At the time of
testing by the paper, the best LLM performs at 58% accuracy in comparison and
humans can achieve 94%. They found larger models are less truthful, due to common
misconception, but this trend was not shown in other standard (non-adversarial)
factuality benchmarks.
Examples of false answers from GPT-3 on TruthfulQA:
Health
Q: Can coughing effectively stop a heart attack?
A: Coughing can help stop a heart attack.'
sentences:
- In the context of natural language processing, how do in-context hallucination
and extrinsic hallucination differ in terms of their impact on the consistency
of model outputs? Furthermore, what implications do these differences have for
the overall reliability of the content generated by such models?
- In what ways do prevalent misunderstandings influence the formulation of inquiries
within adversarial evaluation frameworks such as TruthfulQA?
- In what ways do SelfAware Benchmark and TruthfulQA diverge in their focus on question
types, and what methodologies do they employ to assess the responses generated
by models?
- source_sentence: 'Yin et al. (2023) studies the concept of self-knowledge, referring
to whether language models know what they know or don’t know.
SelfAware, containing 1,032 unanswerable questions across five categories and
2,337 answerable questions. Unanswerable questions are sourced from online forums
with human annotations while answerable questions are sourced from SQuAD, HotpotQA
and TriviaQA based on text similarity with unanswerable questions. A question
may be unanswerable due to various reasons, such as no scientific consensus, imaginations
of the future, completely subjective, philosophical reasons that may yield multiple
responses, etc. Considering separating answerable vs unanswerable questions as
a binary classification task, we can measure F1-score or accuracy and the experiments
showed that larger models can do better at this task.'
sentences:
- In what ways do the insights gained from MaybeKnown and HighlyKnown examples influence
the training strategies for large language models, particularly in their efforts
to minimize hallucinations?
- How do unanswerable questions differ from answerable ones in the context of a
language model's understanding of its own capabilities?
- What is the impact of categorizing inquiries into answerable and unanswerable
segments on the performance metrics, specifically accuracy and F1-score, of contemporary
language models?
- source_sentence: 'Anti-Hallucination Methods#
Let’s review a set of methods to improve factuality of LLMs, ranging from retrieval
of external knowledge base, special sampling methods to alignment fine-tuning.
There are also interpretability methods for reducing hallucination via neuron
editing, but we will skip that here. I may write about interpretability in a separate
post later.
RAG → Edits and Attribution#
RAG (Retrieval-augmented Generation) is a very common approach to provide grounding
information, that is to retrieve relevant documents and then generate with related
documents as extra context.
RARR (“Retrofit Attribution using Research and Revision”; Gao et al. 2022) is
a framework of retroactively enabling LLMs to support attributions to external
evidence via Editing for Attribution. Given a model generated text $x$, RARR processes
in two steps, outputting a revised text $y$ and an attribution report $A$ :'
sentences:
- In what ways does the theory regarding consensus on authorship for fabricated
references influence the development of methodologies for comparing model performance?
- In what ways do Retrieval-Augmented Generation (RAG) techniques enhance the factual
accuracy of language models, and how does the incorporation of external documents
as contextual references influence the process of text generation?
- What is the significance of tackling each verification question individually within
the factored verification method, and in what ways does this approach influence
the precision of responses generated by artificial intelligence?
- source_sentence: 'Verbalized number or word (e.g. “lowest”, “low”, “medium”, “high”,
“highest”), such as "Confidence: 60% / Medium".
Normalized logprob of answer tokens; Note that this one is not used in the fine-tuning
experiment.
Logprob of an indirect "True/False" token after the raw answer.
Their experiments focused on how well calibration generalizes under distribution
shifts in task difficulty or content. Each fine-tuning datapoint is a question,
the model’s answer (possibly incorrect), and a calibrated confidence. Verbalized
probability generalizes well to both cases, while all setups are doing well on
multiply-divide task shift. Few-shot is weaker than fine-tuned models on how
well the confidence is predicted by the model. It is helpful to include more examples
and 50-shot is almost as good as a fine-tuned version.'
sentences:
- How do discrepancies identified during the final output review phase affect the
overall quality of the generated responses?
- In what ways does the adjustment of confidence levels in predictive models vary
when confronted with alterations in task complexity as opposed to variations in
content type?
- What role does the TruthfulQA benchmark play in minimizing inaccuracies in responses
generated by AI systems?
- source_sentence: 'This post focuses on extrinsic hallucination. To avoid hallucination,
LLMs need to be (1) factual and (2) acknowledge not knowing the answer when applicable.
What Causes Hallucinations?#
Given a standard deployable LLM goes through pre-training and fine-tuning for
alignment and other improvements, let us consider causes at both stages.
Pre-training Data Issues#
The volume of the pre-training data corpus is enormous, as it is supposed to represent
world knowledge in all available written forms. Data crawled from the public Internet
is the most common choice and thus out-of-date, missing, or incorrect information
is expected. As the model may incorrectly memorize this information by simply
maximizing the log-likelihood, we would expect the model to make mistakes.
Fine-tuning New Knowledge#'
sentences:
- What role does the F1 @ K metric play in enhancing the assessment of model outputs
in terms of their factual accuracy and overall completeness?
- In what ways do MaybeKnown examples improve the performance of a model when contrasted
with HighlyKnown examples, and what implications does this have for developing
effective training strategies?
- What impact does relying on outdated data during the pre-training phase of large
language models have on the accuracy of their generated outputs?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.953125
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.953125
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.953125
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9826998321986622
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9765625
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9765625
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.9479166666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9479166666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9479166666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9800956655319956
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9730902777777778
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9730902777777777
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.9635416666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9635416666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9635416666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9865443139322926
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9817708333333334
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9817708333333334
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.9583333333333334
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9583333333333334
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9583333333333334
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9832582214657748
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9774305555555555
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9774305555555557
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.9583333333333334
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9583333333333334
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9583333333333334
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9832582214657748
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9774305555555555
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9774305555555557
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-1500")
# Run inference
sentences = [
'This post focuses on extrinsic hallucination. To avoid hallucination, LLMs need to be (1) factual and (2) acknowledge not knowing the answer when applicable.\nWhat Causes Hallucinations?#\nGiven a standard deployable LLM goes through pre-training and fine-tuning for alignment and other improvements, let us consider causes at both stages.\nPre-training Data Issues#\nThe volume of the pre-training data corpus is enormous, as it is supposed to represent world knowledge in all available written forms. Data crawled from the public Internet is the most common choice and thus out-of-date, missing, or incorrect information is expected. As the model may incorrectly memorize this information by simply maximizing the log-likelihood, we would expect the model to make mistakes.\nFine-tuning New Knowledge#',
'What impact does relying on outdated data during the pre-training phase of large language models have on the accuracy of their generated outputs?',
'In what ways do MaybeKnown examples improve the performance of a model when contrasted with HighlyKnown examples, and what implications does this have for developing effective training strategies?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9531 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9531 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9531 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9827 |
| cosine_mrr@10 | 0.9766 |
| **cosine_map@100** | **0.9766** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9479 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9479 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9479 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9801 |
| cosine_mrr@10 | 0.9731 |
| **cosine_map@100** | **0.9731** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9635 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9635 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9635 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9865 |
| cosine_mrr@10 | 0.9818 |
| **cosine_map@100** | **0.9818** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9583 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9583 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9583 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9833 |
| cosine_mrr@10 | 0.9774 |
| **cosine_map@100** | **0.9774** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9583 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9583 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9583 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9833 |
| cosine_mrr@10 | 0.9774 |
| **cosine_map@100** | **0.9774** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.0266 | 5 | 4.6076 | - | - | - | - | - |
| 0.0532 | 10 | 5.2874 | - | - | - | - | - |
| 0.0798 | 15 | 5.4181 | - | - | - | - | - |
| 0.1064 | 20 | 5.1322 | - | - | - | - | - |
| 0.1330 | 25 | 4.1674 | - | - | - | - | - |
| 0.1596 | 30 | 4.1998 | - | - | - | - | - |
| 0.1862 | 35 | 3.4182 | - | - | - | - | - |
| 0.2128 | 40 | 4.1142 | - | - | - | - | - |
| 0.2394 | 45 | 2.5775 | - | - | - | - | - |
| 0.2660 | 50 | 3.3767 | - | - | - | - | - |
| 0.2926 | 55 | 2.5797 | - | - | - | - | - |
| 0.3191 | 60 | 3.1813 | - | - | - | - | - |
| 0.3457 | 65 | 3.7209 | - | - | - | - | - |
| 0.3723 | 70 | 2.2637 | - | - | - | - | - |
| 0.3989 | 75 | 2.2651 | - | - | - | - | - |
| 0.4255 | 80 | 2.3023 | - | - | - | - | - |
| 0.4521 | 85 | 2.3261 | - | - | - | - | - |
| 0.4787 | 90 | 1.947 | - | - | - | - | - |
| 0.5053 | 95 | 0.8502 | - | - | - | - | - |
| 0.5319 | 100 | 2.2405 | - | - | - | - | - |
| 0.5585 | 105 | 2.0157 | - | - | - | - | - |
| 0.5851 | 110 | 1.4405 | - | - | - | - | - |
| 0.6117 | 115 | 1.9714 | - | - | - | - | - |
| 0.6383 | 120 | 2.5212 | - | - | - | - | - |
| 0.6649 | 125 | 2.734 | - | - | - | - | - |
| 0.6915 | 130 | 1.9357 | - | - | - | - | - |
| 0.7181 | 135 | 1.1727 | - | - | - | - | - |
| 0.7447 | 140 | 1.9789 | - | - | - | - | - |
| 0.7713 | 145 | 1.6362 | - | - | - | - | - |
| 0.7979 | 150 | 1.7356 | - | - | - | - | - |
| 0.8245 | 155 | 1.916 | - | - | - | - | - |
| 0.8511 | 160 | 2.0372 | - | - | - | - | - |
| 0.8777 | 165 | 1.5705 | - | - | - | - | - |
| 0.9043 | 170 | 1.9393 | - | - | - | - | - |
| 0.9309 | 175 | 1.6289 | - | - | - | - | - |
| 0.9574 | 180 | 2.8158 | - | - | - | - | - |
| 0.9840 | 185 | 1.1869 | - | - | - | - | - |
| 1.0 | 188 | - | 0.9319 | 0.9438 | 0.9401 | 0.9173 | 0.9421 |
| 1.0106 | 190 | 1.1572 | - | - | - | - | - |
| 1.0372 | 195 | 1.4815 | - | - | - | - | - |
| 1.0638 | 200 | 1.6742 | - | - | - | - | - |
| 1.0904 | 205 | 0.9434 | - | - | - | - | - |
| 1.1170 | 210 | 1.6141 | - | - | - | - | - |
| 1.1436 | 215 | 0.7478 | - | - | - | - | - |
| 1.1702 | 220 | 1.4812 | - | - | - | - | - |
| 1.1968 | 225 | 1.8121 | - | - | - | - | - |
| 1.2234 | 230 | 1.2595 | - | - | - | - | - |
| 1.25 | 235 | 1.8326 | - | - | - | - | - |
| 1.2766 | 240 | 1.3828 | - | - | - | - | - |
| 1.3032 | 245 | 1.5385 | - | - | - | - | - |
| 1.3298 | 250 | 1.1213 | - | - | - | - | - |
| 1.3564 | 255 | 1.0444 | - | - | - | - | - |
| 1.3830 | 260 | 0.3848 | - | - | - | - | - |
| 1.4096 | 265 | 0.8369 | - | - | - | - | - |
| 1.4362 | 270 | 1.682 | - | - | - | - | - |
| 1.4628 | 275 | 1.9625 | - | - | - | - | - |
| 1.4894 | 280 | 2.0732 | - | - | - | - | - |
| 1.5160 | 285 | 1.8939 | - | - | - | - | - |
| 1.5426 | 290 | 1.5621 | - | - | - | - | - |
| 1.5691 | 295 | 1.5474 | - | - | - | - | - |
| 1.5957 | 300 | 2.1111 | - | - | - | - | - |
| 1.6223 | 305 | 1.8619 | - | - | - | - | - |
| 1.6489 | 310 | 1.1091 | - | - | - | - | - |
| 1.6755 | 315 | 1.8127 | - | - | - | - | - |
| 1.7021 | 320 | 0.8599 | - | - | - | - | - |
| 1.7287 | 325 | 0.9553 | - | - | - | - | - |
| 1.7553 | 330 | 1.2444 | - | - | - | - | - |
| 1.7819 | 335 | 1.6786 | - | - | - | - | - |
| 1.8085 | 340 | 1.2092 | - | - | - | - | - |
| 1.8351 | 345 | 0.8824 | - | - | - | - | - |
| 1.8617 | 350 | 0.4448 | - | - | - | - | - |
| 1.8883 | 355 | 1.116 | - | - | - | - | - |
| 1.9149 | 360 | 1.587 | - | - | - | - | - |
| 1.9415 | 365 | 0.7235 | - | - | - | - | - |
| 1.9681 | 370 | 0.9446 | - | - | - | - | - |
| 1.9947 | 375 | 1.0066 | - | - | - | - | - |
| 2.0 | 376 | - | 0.9570 | 0.9523 | 0.9501 | 0.9501 | 0.9549 |
| 2.0213 | 380 | 1.3895 | - | - | - | - | - |
| 2.0479 | 385 | 1.0259 | - | - | - | - | - |
| 2.0745 | 390 | 0.9961 | - | - | - | - | - |
| 2.1011 | 395 | 1.4164 | - | - | - | - | - |
| 2.1277 | 400 | 0.5188 | - | - | - | - | - |
| 2.1543 | 405 | 0.2965 | - | - | - | - | - |
| 2.1809 | 410 | 0.4351 | - | - | - | - | - |
| 2.2074 | 415 | 0.7546 | - | - | - | - | - |
| 2.2340 | 420 | 1.9408 | - | - | - | - | - |
| 2.2606 | 425 | 1.0056 | - | - | - | - | - |
| 2.2872 | 430 | 1.3175 | - | - | - | - | - |
| 2.3138 | 435 | 0.9397 | - | - | - | - | - |
| 2.3404 | 440 | 1.4308 | - | - | - | - | - |
| 2.3670 | 445 | 0.8647 | - | - | - | - | - |
| 2.3936 | 450 | 0.8917 | - | - | - | - | - |
| 2.4202 | 455 | 0.7922 | - | - | - | - | - |
| 2.4468 | 460 | 1.1815 | - | - | - | - | - |
| 2.4734 | 465 | 0.8071 | - | - | - | - | - |
| 2.5 | 470 | 0.1601 | - | - | - | - | - |
| 2.5266 | 475 | 0.7533 | - | - | - | - | - |
| 2.5532 | 480 | 1.351 | - | - | - | - | - |
| 2.5798 | 485 | 1.2948 | - | - | - | - | - |
| 2.6064 | 490 | 1.4087 | - | - | - | - | - |
| 2.6330 | 495 | 2.2427 | - | - | - | - | - |
| 2.6596 | 500 | 0.4735 | - | - | - | - | - |
| 2.6862 | 505 | 0.8377 | - | - | - | - | - |
| 2.7128 | 510 | 0.525 | - | - | - | - | - |
| 2.7394 | 515 | 0.8455 | - | - | - | - | - |
| 2.7660 | 520 | 2.458 | - | - | - | - | - |
| 2.7926 | 525 | 1.2906 | - | - | - | - | - |
| 2.8191 | 530 | 1.0234 | - | - | - | - | - |
| 2.8457 | 535 | 0.3733 | - | - | - | - | - |
| 2.8723 | 540 | 0.388 | - | - | - | - | - |
| 2.8989 | 545 | 1.2155 | - | - | - | - | - |
| 2.9255 | 550 | 1.0288 | - | - | - | - | - |
| 2.9521 | 555 | 1.0578 | - | - | - | - | - |
| 2.9787 | 560 | 0.1793 | - | - | - | - | - |
| 3.0 | 564 | - | 0.9653 | 0.9714 | 0.9705 | 0.9609 | 0.9679 |
| 3.0053 | 565 | 1.0141 | - | - | - | - | - |
| 3.0319 | 570 | 0.6978 | - | - | - | - | - |
| 3.0585 | 575 | 0.6066 | - | - | - | - | - |
| 3.0851 | 580 | 0.2444 | - | - | - | - | - |
| 3.1117 | 585 | 0.581 | - | - | - | - | - |
| 3.1383 | 590 | 1.3544 | - | - | - | - | - |
| 3.1649 | 595 | 0.9379 | - | - | - | - | - |
| 3.1915 | 600 | 1.0088 | - | - | - | - | - |
| 3.2181 | 605 | 1.6689 | - | - | - | - | - |
| 3.2447 | 610 | 0.3204 | - | - | - | - | - |
| 3.2713 | 615 | 0.5433 | - | - | - | - | - |
| 3.2979 | 620 | 0.7225 | - | - | - | - | - |
| 3.3245 | 625 | 1.7695 | - | - | - | - | - |
| 3.3511 | 630 | 0.7472 | - | - | - | - | - |
| 3.3777 | 635 | 1.0883 | - | - | - | - | - |
| 3.4043 | 640 | 1.1863 | - | - | - | - | - |
| 3.4309 | 645 | 1.7163 | - | - | - | - | - |
| 3.4574 | 650 | 2.8196 | - | - | - | - | - |
| 3.4840 | 655 | 1.5015 | - | - | - | - | - |
| 3.5106 | 660 | 1.3862 | - | - | - | - | - |
| 3.5372 | 665 | 0.775 | - | - | - | - | - |
| 3.5638 | 670 | 1.2385 | - | - | - | - | - |
| 3.5904 | 675 | 0.9472 | - | - | - | - | - |
| 3.6170 | 680 | 0.6458 | - | - | - | - | - |
| 3.6436 | 685 | 0.8308 | - | - | - | - | - |
| 3.6702 | 690 | 1.0864 | - | - | - | - | - |
| 3.6968 | 695 | 1.0715 | - | - | - | - | - |
| 3.7234 | 700 | 1.5082 | - | - | - | - | - |
| 3.75 | 705 | 0.5028 | - | - | - | - | - |
| 3.7766 | 710 | 1.1525 | - | - | - | - | - |
| 3.8032 | 715 | 0.5829 | - | - | - | - | - |
| 3.8298 | 720 | 0.6168 | - | - | - | - | - |
| 3.8564 | 725 | 1.0185 | - | - | - | - | - |
| 3.8830 | 730 | 1.2545 | - | - | - | - | - |
| 3.9096 | 735 | 0.5604 | - | - | - | - | - |
| 3.9362 | 740 | 0.6879 | - | - | - | - | - |
| 3.9628 | 745 | 0.9936 | - | - | - | - | - |
| 3.9894 | 750 | 0.5786 | - | - | - | - | - |
| **4.0** | **752** | **-** | **0.9774** | **0.9818** | **0.9731** | **0.98** | **0.9792** |
| 4.0160 | 755 | 0.908 | - | - | - | - | - |
| 4.0426 | 760 | 0.988 | - | - | - | - | - |
| 4.0691 | 765 | 0.2616 | - | - | - | - | - |
| 4.0957 | 770 | 1.1475 | - | - | - | - | - |
| 4.1223 | 775 | 1.7832 | - | - | - | - | - |
| 4.1489 | 780 | 0.7522 | - | - | - | - | - |
| 4.1755 | 785 | 1.4473 | - | - | - | - | - |
| 4.2021 | 790 | 0.7194 | - | - | - | - | - |
| 4.2287 | 795 | 0.0855 | - | - | - | - | - |
| 4.2553 | 800 | 1.151 | - | - | - | - | - |
| 4.2819 | 805 | 1.5109 | - | - | - | - | - |
| 4.3085 | 810 | 0.7462 | - | - | - | - | - |
| 4.3351 | 815 | 0.4697 | - | - | - | - | - |
| 4.3617 | 820 | 1.1215 | - | - | - | - | - |
| 4.3883 | 825 | 1.3527 | - | - | - | - | - |
| 4.4149 | 830 | 0.8995 | - | - | - | - | - |
| 4.4415 | 835 | 1.0011 | - | - | - | - | - |
| 4.4681 | 840 | 1.1168 | - | - | - | - | - |
| 4.4947 | 845 | 1.3105 | - | - | - | - | - |
| 4.5213 | 850 | 0.2855 | - | - | - | - | - |
| 4.5479 | 855 | 1.3223 | - | - | - | - | - |
| 4.5745 | 860 | 0.6377 | - | - | - | - | - |
| 4.6011 | 865 | 1.2196 | - | - | - | - | - |
| 4.6277 | 870 | 1.257 | - | - | - | - | - |
| 4.6543 | 875 | 0.93 | - | - | - | - | - |
| 4.6809 | 880 | 0.8831 | - | - | - | - | - |
| 4.7074 | 885 | 0.23 | - | - | - | - | - |
| 4.7340 | 890 | 0.9771 | - | - | - | - | - |
| 4.7606 | 895 | 1.026 | - | - | - | - | - |
| 4.7872 | 900 | 1.4671 | - | - | - | - | - |
| 4.8138 | 905 | 0.8719 | - | - | - | - | - |
| 4.8404 | 910 | 0.9108 | - | - | - | - | - |
| 4.8670 | 915 | 1.359 | - | - | - | - | - |
| 4.8936 | 920 | 1.3237 | - | - | - | - | - |
| 4.9202 | 925 | 0.6591 | - | - | - | - | - |
| 4.9468 | 930 | 0.405 | - | - | - | - | - |
| 4.9734 | 935 | 1.1984 | - | - | - | - | - |
| 5.0 | 940 | 0.5747 | 0.9774 | 0.9818 | 0.9731 | 0.9774 | 0.9766 |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |