|
--- |
|
language: |
|
- es |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- jorgeortizfuentes/spanish_nominal_groups_conll2003 |
|
model-index: |
|
- name: nominal-groups-recognition-bert-base-spanish-wwm-cased |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nominal-groups-recognition-bert-base-spanish-wwm-cased |
|
|
|
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co./dccuchile/bert-base-spanish-wwm-cased) on the jorgeortizfuentes/spanish_nominal_groups_conll2003 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3568 |
|
- Ng Precision: 0.7280 |
|
- Ng Recall: 0.7767 |
|
- Ng F1: 0.7516 |
|
- Ng Number: 3198 |
|
- Overall Precision: 0.7280 |
|
- Overall Recall: 0.7767 |
|
- Overall F1: 0.7516 |
|
- Overall Accuracy: 0.8992 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 13 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Ng Precision | Ng Recall | Ng F1 | Ng Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------------:|:---------:|:------:|:---------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| 0.3955 | 1.0 | 228 | 0.2778 | 0.7129 | 0.7492 | 0.7306 | 3198 | 0.7129 | 0.7492 | 0.7306 | 0.8924 | |
|
| 0.2186 | 2.0 | 456 | 0.2763 | 0.7318 | 0.7711 | 0.7509 | 3198 | 0.7318 | 0.7711 | 0.7509 | 0.8990 | |
|
| 0.1586 | 3.0 | 684 | 0.2960 | 0.7274 | 0.7733 | 0.7496 | 3198 | 0.7274 | 0.7733 | 0.7496 | 0.8992 | |
|
| 0.119 | 4.0 | 912 | 0.3330 | 0.7283 | 0.7727 | 0.7498 | 3198 | 0.7283 | 0.7727 | 0.7498 | 0.8982 | |
|
| 0.0943 | 5.0 | 1140 | 0.3568 | 0.7280 | 0.7767 | 0.7516 | 3198 | 0.7280 | 0.7767 | 0.7516 | 0.8992 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|