--- language: - es tags: - generated_from_trainer datasets: - jorgeortizfuentes/spanish_nominal_groups_conll2003 model-index: - name: nominal-groups-recognition-bert-base-spanish-wwm-cased results: [] --- # nominal-groups-recognition-bert-base-spanish-wwm-cased This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co./dccuchile/bert-base-spanish-wwm-cased) on the jorgeortizfuentes/spanish_nominal_groups_conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.3568 - Ng Precision: 0.7280 - Ng Recall: 0.7767 - Ng F1: 0.7516 - Ng Number: 3198 - Overall Precision: 0.7280 - Overall Recall: 0.7767 - Overall F1: 0.7516 - Overall Accuracy: 0.8992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 13 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Ng Precision | Ng Recall | Ng F1 | Ng Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------------:|:---------:|:------:|:---------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.3955 | 1.0 | 228 | 0.2778 | 0.7129 | 0.7492 | 0.7306 | 3198 | 0.7129 | 0.7492 | 0.7306 | 0.8924 | | 0.2186 | 2.0 | 456 | 0.2763 | 0.7318 | 0.7711 | 0.7509 | 3198 | 0.7318 | 0.7711 | 0.7509 | 0.8990 | | 0.1586 | 3.0 | 684 | 0.2960 | 0.7274 | 0.7733 | 0.7496 | 3198 | 0.7274 | 0.7733 | 0.7496 | 0.8992 | | 0.119 | 4.0 | 912 | 0.3330 | 0.7283 | 0.7727 | 0.7498 | 3198 | 0.7283 | 0.7727 | 0.7498 | 0.8982 | | 0.0943 | 5.0 | 1140 | 0.3568 | 0.7280 | 0.7767 | 0.7516 | 3198 | 0.7280 | 0.7767 | 0.7516 | 0.8992 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3