llama-3.1-8b-chinese-instruct with SFT and DPO
项目简介
LLAMA-3.1-8B-Instruct 模型,以其庞大的参数规模、强大的上下文理解能力和灵活的指令遵循能力,在全球范围内赢得了广泛的关注与赞誉。该模型在多种自然语言处理任务上展现出卓越的性能,包括但不限于文本生成、问答系统、文本摘要等,为人工智能领域的研究与应用提供了强大的技术支持。
然而,尽管LLAMA-3.1-8B-Instruct模型在多种语言环境下均表现出色,但在中文这一特定语境下,其性能却存在一定的局限性。为了弥补这一不足,本项目旨在通过针对中文语境的深入优化,提升LLAMA 3.1-8B-Instruct模型在中文处理上的能力。
本项目基于llama-3.1-8b-instruct模型,在llama-factory的框架下,使用近30w条中文数据进行微调(Fine-tuning),并尝试应用了动态提示优化(Dynamic Prompt Optimization, DPO)技术,旨在提升模型在中文语境下的理解和生成能力。
模型特点
基础模型:基于开源的llama3.1-8b-instruct,这是一个经过指令微调的大型语言模型。
中文优化:通过大量中文数据集进行微调,提升模型在中文处理上的表现。
DPO训练:采用动态提示优化技术,进一步优化模型在特定任务上的性能。
安装与加载
克隆本项目到本地:
git clone
cd llama-3.1-8b-it-ch-dpo
模型测评
Ceval
C-Eval 是一个全面的中文基础模型评估套件。它包含了大量的多项选择题,涵盖了人文、社科、理工以及其他专业四个大方向,包括52个不同的学科和四个难度级别。
C-Eval | Average | Average(hard) | STEM | Social Sciences | Humanities | Other |
---|---|---|---|---|---|---|
原模型 | 25.2 | 23.6 | 25 | 26.5 | 25.1 | 24.3 |
训练后 | 44.0 | 32.5 | 41.6 | 51.9 | 41.1 | 44.0 |
Cmmlu
CMMLU是一个综合性的中文评估基准,专门用于评估语言模型在中文语境下的知识和推理能力。CMMLU涵盖了从基础学科到高级专业水平的67个主题。它包括:需要计算和推理的自然科学,需要知识的人文科学和社会科学,以及需要生活常识的中国驾驶规则等。
CMMLU | Average | STEM | Social Sciences | Humanities | Other |
---|---|---|---|---|---|
原模型 | 24.99 | 26.04 | 24.84 | 25.23 | 24.05 |
训练后 | 44.63 | 37.5 | 45.21 | 45.76 | 49.14 |
数据集
微调数据集:
dpo数据集:
DPO-En-Zh-20k | https://huggingface.co./datasets/hiyouga/DPO-En-Zh-20k |
orca_dpo_pairs | https://huggingface.co./datasets/Intel/orca_dpo_pairs |
Chinese-dpo-pairs | https://huggingface.co./datasets/wenbopan/Chinese-dpo-pairs |
DPO-zh-en-emoji | https://huggingface.co./datasets/shareAI/DPO-zh-en-emoji |
Sft图像:
Dpo:
Training loss:
Training rewards: