YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co./docs/hub/model-cards#model-card-metadata)

llama-3.1-8b-chinese-instruct with SFT and DPO

项目简介

LLAMA-3.1系列模型于2024年7月24日发布,是Meta公司迄今为止规模最大、质量最高的开源模型。Meta评估了超150个基准数据集的性能,Llama-3.1系列模型在常识、可操作性、数学、工具使用和多语言翻译等一系列任务中,可与GPT-4o、Claude 3.5 Sonnet和Gemini Ultra相媲美。其中LLAMA-3.1-8B-Instruct模型,以其庞大的参数规模、强大的上下文理解能力和灵活的指令遵循能力,在全球范围内赢得了广泛的关注与赞誉。该模型在多种自然语言处理任务上展现出卓越的性能,包括但不限于文本生成、问答系统、文本摘要等,为人工智能领域的研究与应用提供了强大的技术支持。

然而,尽管LLAMA-3.1-8B-Instruct模型在多种语言环境下均表现出色,但在中文这一特定语境下,其性能却存在一定的局限性。为了弥补这一不足,本项目旨在通过针对中文语境的深入优化,提升LLAMA 3.1-8B-Instruct模型在中文处理上的能力。

本项目基于llama-3.1-8b-instruct模型,与当前相关工作不同的是,我们采用了指令微调(Instruction Fine-tuning)和直接偏好对齐(Direct Preference Optimization, DPO)二阶段的学习方法,使用近30w条中文数据进行有监督指令微调,然后应用5000条对齐指令进行直接偏好对齐,旨在进一步提升模型在中文语境下的理解和生成能力。在两个权威的中文评测基准下,C-Eval提升了83.34%的性能,CMMLU提升了83.95%的性能。我们公开了该项目所有的模型权重和训练数据集,欢迎大家一起学习和探讨。

模型特点

基础模型:基于开源的llama3.1-8b-instruct,这是一个经过指令微调的大型语言基础模型。

指令微调:通过大量高质量中文数据集进行指令微调,提升模型在中文处理上的表现。

DPO对齐:采用直接偏好对齐技术,进一步优化模型在特定任务上的性能。

安装与加载

克隆本项目到本地:https://huggingface.co./jiangfb/llama-3.1-chinese-8b-it-dpo

git clone

cd llama-3.1-chinese-8b-it-dpo

模型测评

Ceval

C-Eval 是一个全面的中文基础模型评估套件。它包含了大量的多项选择题,涵盖了人文、社科、理工以及其他专业四个大方向,包括52个不同的学科和四个难度级别。

C-Eval Average Average(hard) STEM Social Sciences Humanities Other
原生LLaMA3.1模型 24.1 23.5 23.9 25.3 24.6 22.7
我们的LLaMA3.1模型 44.7 32.9 41.8 52.7 42.0 44.5

Cmmlu

CMMLU是一个综合性的中文评估基准,专门用于评估语言模型在中文语境下的知识和推理能力。CMMLU涵盖了从基础学科到高级专业水平的67个主题。它包括:需要计算和推理的自然科学,需要知识的人文科学和社会科学,以及需要生活常识的中国驾驶规则等。

CMMLU Average STEM Social Sciences Humanities Other
原生LLaMA3.1模型 25.3 26.04 25.19 25.79 25.26
我们的LLaMA3.1模型 46.54 39.31 47.21 47.41 51.34

数据集

SFT数据集:

DPO数据集:

Downloads last month
1
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for jiangfb/llama-3.1-chinese-8b-it-dpo

Quantizations
1 model