|
--- |
|
base_model: ddobokki/vision-encoder-decoder-vit-gpt2-coco-ko |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: BITAMIN_PET_FINAL |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BITAMIN_PET_FINAL |
|
|
|
This model is a fine-tuned version of [ddobokki/vision-encoder-decoder-vit-gpt2-coco-ko](https://huggingface.co./ddobokki/vision-encoder-decoder-vit-gpt2-coco-ko) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0670 |
|
- Rouge1: 5.1373 |
|
- Rouge2: 3.2797 |
|
- Rougel: 5.1561 |
|
- Rougelsum: 5.1999 |
|
- Gen Len: 100.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Gen Len | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:-------:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 0.1753 | 1.0 | 5963 | 100.0 | 0.1586 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.1066 | 2.0 | 11926 | 0.1091 | 0.2155 | 0.1961 | 0.2155 | 0.2305 | 100.0 | |
|
| 0.0659 | 3.0 | 17889 | 0.0834 | 1.8169 | 1.2573 | 1.8423 | 1.8571 | 100.0 | |
|
| 0.0417 | 4.0 | 23852 | 0.0712 | 2.9034 | 1.9182 | 2.9223 | 2.9168 | 100.0 | |
|
| 0.0319 | 5.0 | 29815 | 0.0670 | 5.1373 | 3.2797 | 5.1561 | 5.1999 | 100.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|