--- base_model: ddobokki/vision-encoder-decoder-vit-gpt2-coco-ko tags: - generated_from_trainer metrics: - rouge model-index: - name: BITAMIN_PET_FINAL results: [] --- # BITAMIN_PET_FINAL This model is a fine-tuned version of [ddobokki/vision-encoder-decoder-vit-gpt2-coco-ko](https://huggingface.co./ddobokki/vision-encoder-decoder-vit-gpt2-coco-ko) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0670 - Rouge1: 5.1373 - Rouge2: 3.2797 - Rougel: 5.1561 - Rougelsum: 5.1999 - Gen Len: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Gen Len | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:-------:|:---------------:|:------:|:------:|:------:|:---------:| | 0.1753 | 1.0 | 5963 | 100.0 | 0.1586 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1066 | 2.0 | 11926 | 0.1091 | 0.2155 | 0.1961 | 0.2155 | 0.2305 | 100.0 | | 0.0659 | 3.0 | 17889 | 0.0834 | 1.8169 | 1.2573 | 1.8423 | 1.8571 | 100.0 | | 0.0417 | 4.0 | 23852 | 0.0712 | 2.9034 | 1.9182 | 2.9223 | 2.9168 | 100.0 | | 0.0319 | 5.0 | 29815 | 0.0670 | 5.1373 | 3.2797 | 5.1561 | 5.1999 | 100.0 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1