jcrkn's picture
End of training
0fb65c9
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-breton-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: br
          split: test
          args: br
        metrics:
          - name: Wer
            type: wer
            value: 0.4936988936988937

wav2vec2-large-xls-r-300m-breton-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2211
  • Wer: 0.4937

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer
5.3288 1.34 400 1.7076 0.9809
1.2014 2.69 800 1.0803 0.7733
0.7687 4.03 1200 0.9806 0.6642
0.5539 5.38 1600 0.9914 0.6301
0.4456 6.72 2000 0.9797 0.6265
0.3586 8.07 2400 1.0354 0.5803
0.2922 9.41 2800 0.9996 0.5821
0.2628 10.76 3200 1.0250 0.5708
0.2284 12.1 3600 1.0865 0.5722
0.1908 13.45 4000 1.0674 0.5450
0.1732 14.79 4400 1.1775 0.5614
0.153 16.13 4800 1.1542 0.5435
0.14 17.48 5200 1.1807 0.5449
0.1302 18.82 5600 1.1679 0.5376
0.1142 20.17 6000 1.1441 0.5276
0.104 21.51 6400 1.2243 0.5355
0.0882 22.86 6800 1.1837 0.5316
0.0807 24.2 7200 1.1986 0.5132
0.0744 25.55 7600 1.2182 0.5108
0.0646 26.89 8000 1.2116 0.5047
0.0551 28.24 8400 1.2009 0.4948
0.0503 29.58 8800 1.2211 0.4937

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3