wav2vec2-large-xls-r-300m-breton-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2211
  • Wer: 0.4937

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer
5.3288 1.34 400 1.7076 0.9809
1.2014 2.69 800 1.0803 0.7733
0.7687 4.03 1200 0.9806 0.6642
0.5539 5.38 1600 0.9914 0.6301
0.4456 6.72 2000 0.9797 0.6265
0.3586 8.07 2400 1.0354 0.5803
0.2922 9.41 2800 0.9996 0.5821
0.2628 10.76 3200 1.0250 0.5708
0.2284 12.1 3600 1.0865 0.5722
0.1908 13.45 4000 1.0674 0.5450
0.1732 14.79 4400 1.1775 0.5614
0.153 16.13 4800 1.1542 0.5435
0.14 17.48 5200 1.1807 0.5449
0.1302 18.82 5600 1.1679 0.5376
0.1142 20.17 6000 1.1441 0.5276
0.104 21.51 6400 1.2243 0.5355
0.0882 22.86 6800 1.1837 0.5316
0.0807 24.2 7200 1.1986 0.5132
0.0744 25.55 7600 1.2182 0.5108
0.0646 26.89 8000 1.2116 0.5047
0.0551 28.24 8400 1.2009 0.4948
0.0503 29.58 8800 1.2211 0.4937

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
27
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jcrkn/wav2vec2-large-xls-r-300m-breton-colab

Finetuned
(522)
this model

Evaluation results