metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
- f1
- precision
- recall
widget:
- text: >-
brand's product, powered by product, is making waves by potentially
surpassing brand's product in ai performance. lets not forget massive
developments in ai from brand, brand, brand and 5 new tools here's what
you need to know:
- text: >-
well... brand launches product tomorrow so it's going to be much more
exciting than 2x! product ca: 0x09e5e172df245529b22686b77e959d3f2937feb0
- text: >-
brand's product is product's newest and greatest competitor yet: here's
how you can use it within product dlvr.it/szs9nh
- text: >-
bad actors exploit product to write malicious codes product, ever since
its launch in november last year, has been making lots of noise. with
creators experimenting with it and getting varied results, the product
became an acceptable product tool that couldlnkd.in/drbvpbdt
- text: >-
testing out product. i find it incredibly useful. one way to monetize it
is simply to put paid links related to the search
pipeline_tag: text-classification
inference: true
base_model: BAAI/bge-base-en-v1.5
model-index:
- name: SetFit with BAAI/bge-base-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.86
name: Accuracy
- type: f1
value:
- 0.2857142857142857
- 0.5945945945945945
- 0.9195402298850575
name: F1
- type: precision
value:
- 1
- 0.9166666666666666
- 0.8547008547008547
name: Precision
- type: recall
value:
- 0.16666666666666666
- 0.44
- 0.9950248756218906
name: Recall
SetFit with BAAI/bge-base-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-base-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-base-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
neither |
|
peak |
|
pit |
|
Evaluation
Metrics
Label | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|
all | 0.86 | [0.2857142857142857, 0.5945945945945945, 0.9195402298850575] | [1.0, 0.9166666666666666, 0.8547008547008547] | [0.16666666666666666, 0.44, 0.9950248756218906] |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("jamiehudson/725_model_v3")
# Run inference
preds = model("brand's product is product's newest and greatest competitor yet: here's how you can use it within product dlvr.it/szs9nh")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 27.8534 | 91 |
Label | Training Sample Count |
---|---|
pit | 26 |
peak | 51 |
neither | 1137 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0012 | 1 | 0.2612 | - |
0.0621 | 50 | 0.2009 | - |
0.1242 | 100 | 0.0339 | - |
0.1863 | 150 | 0.0062 | - |
0.2484 | 200 | 0.0039 | - |
0.3106 | 250 | 0.0017 | - |
0.3727 | 300 | 0.003 | - |
0.4348 | 350 | 0.0015 | - |
0.4969 | 400 | 0.002 | - |
0.5590 | 450 | 0.0022 | - |
0.6211 | 500 | 0.0013 | - |
0.6832 | 550 | 0.0013 | - |
0.7453 | 600 | 0.0014 | - |
0.8075 | 650 | 0.0014 | - |
0.8696 | 700 | 0.0012 | - |
0.9317 | 750 | 0.0014 | - |
0.9938 | 800 | 0.0016 | - |
0.0000 | 1 | 0.0897 | - |
0.0012 | 50 | 0.1107 | - |
0.0025 | 100 | 0.065 | - |
0.0037 | 150 | 0.1892 | - |
0.0049 | 200 | 0.0774 | - |
0.0062 | 250 | 0.0391 | - |
0.0074 | 300 | 0.117 | - |
0.0086 | 350 | 0.0954 | - |
0.0099 | 400 | 0.0292 | - |
0.0111 | 450 | 0.0327 | - |
0.0123 | 500 | 0.0041 | - |
0.0136 | 550 | 0.0018 | - |
0.0148 | 600 | 0.03 | - |
0.0160 | 650 | 0.0015 | - |
0.0173 | 700 | 0.0036 | - |
0.0185 | 750 | 0.0182 | - |
0.0197 | 800 | 0.0017 | - |
0.0210 | 850 | 0.0012 | - |
0.0222 | 900 | 0.0014 | - |
0.0234 | 950 | 0.0011 | - |
0.0247 | 1000 | 0.0014 | - |
0.0259 | 1050 | 0.0301 | - |
0.0271 | 1100 | 0.001 | - |
0.0284 | 1150 | 0.0011 | - |
0.0296 | 1200 | 0.0009 | - |
0.0308 | 1250 | 0.0011 | - |
0.0321 | 1300 | 0.0012 | - |
0.0333 | 1350 | 0.001 | - |
0.0345 | 1400 | 0.0008 | - |
0.0358 | 1450 | 0.005 | - |
0.0370 | 1500 | 0.0008 | - |
0.0382 | 1550 | 0.0044 | - |
0.0395 | 1600 | 0.0008 | - |
0.0407 | 1650 | 0.0007 | - |
0.0419 | 1700 | 0.0014 | - |
0.0432 | 1750 | 0.0006 | - |
0.0444 | 1800 | 0.001 | - |
0.0456 | 1850 | 0.0007 | - |
0.0469 | 1900 | 0.0006 | - |
0.0481 | 1950 | 0.0006 | - |
0.0493 | 2000 | 0.0005 | - |
0.0506 | 2050 | 0.0006 | - |
0.0518 | 2100 | 0.0041 | - |
0.0530 | 2150 | 0.0006 | - |
0.0543 | 2200 | 0.0006 | - |
0.0555 | 2250 | 0.0007 | - |
0.0567 | 2300 | 0.0006 | - |
0.0580 | 2350 | 0.0005 | - |
0.0592 | 2400 | 0.0007 | - |
0.0604 | 2450 | 0.0005 | - |
0.0617 | 2500 | 0.0004 | - |
0.0629 | 2550 | 0.0005 | - |
0.0641 | 2600 | 0.0004 | - |
0.0654 | 2650 | 0.0007 | - |
0.0666 | 2700 | 0.0004 | - |
0.0678 | 2750 | 0.0005 | - |
0.0691 | 2800 | 0.0004 | - |
0.0703 | 2850 | 0.0004 | - |
0.0715 | 2900 | 0.0004 | - |
0.0728 | 2950 | 0.0005 | - |
0.0740 | 3000 | 0.0004 | - |
0.0752 | 3050 | 0.0004 | - |
0.0765 | 3100 | 0.0003 | - |
0.0777 | 3150 | 0.0003 | - |
0.0789 | 3200 | 0.0003 | - |
0.0802 | 3250 | 0.0003 | - |
0.0814 | 3300 | 0.0004 | - |
0.0826 | 3350 | 0.0003 | - |
0.0839 | 3400 | 0.0003 | - |
0.0851 | 3450 | 0.0007 | - |
0.0863 | 3500 | 0.0003 | - |
0.0876 | 3550 | 0.0003 | - |
0.0888 | 3600 | 0.0004 | - |
0.0900 | 3650 | 0.0003 | - |
0.0913 | 3700 | 0.0003 | - |
0.0925 | 3750 | 0.0004 | - |
0.0937 | 3800 | 0.0004 | - |
0.0950 | 3850 | 0.0232 | - |
0.0962 | 3900 | 0.0004 | - |
0.0974 | 3950 | 0.0165 | - |
0.0987 | 4000 | 0.0003 | - |
0.0999 | 4050 | 0.0229 | - |
0.1011 | 4100 | 0.0004 | - |
0.1024 | 4150 | 0.0003 | - |
0.1036 | 4200 | 0.0004 | - |
0.1048 | 4250 | 0.0002 | - |
0.1061 | 4300 | 0.0002 | - |
0.1073 | 4350 | 0.0002 | - |
0.1085 | 4400 | 0.0003 | - |
0.1098 | 4450 | 0.0002 | - |
0.1110 | 4500 | 0.0002 | - |
0.1122 | 4550 | 0.0003 | - |
0.1135 | 4600 | 0.0002 | - |
0.1147 | 4650 | 0.0002 | - |
0.1159 | 4700 | 0.0002 | - |
0.1172 | 4750 | 0.0002 | - |
0.1184 | 4800 | 0.0002 | - |
0.1196 | 4850 | 0.0002 | - |
0.1209 | 4900 | 0.0002 | - |
0.1221 | 4950 | 0.0002 | - |
0.1233 | 5000 | 0.0002 | - |
0.1246 | 5050 | 0.0002 | - |
0.1258 | 5100 | 0.0002 | - |
0.1270 | 5150 | 0.0003 | - |
0.1283 | 5200 | 0.0001 | - |
0.1295 | 5250 | 0.0002 | - |
0.1307 | 5300 | 0.0002 | - |
0.1320 | 5350 | 0.0002 | - |
0.1332 | 5400 | 0.0001 | - |
0.1344 | 5450 | 0.0002 | - |
0.1357 | 5500 | 0.0002 | - |
0.1369 | 5550 | 0.0002 | - |
0.1381 | 5600 | 0.0001 | - |
0.1394 | 5650 | 0.0001 | - |
0.1406 | 5700 | 0.0001 | - |
0.1418 | 5750 | 0.0001 | - |
0.1431 | 5800 | 0.0001 | - |
0.1443 | 5850 | 0.0001 | - |
0.1455 | 5900 | 0.0001 | - |
0.1468 | 5950 | 0.0002 | - |
0.1480 | 6000 | 0.0001 | - |
0.1492 | 6050 | 0.0002 | - |
0.1505 | 6100 | 0.0002 | - |
0.1517 | 6150 | 0.0004 | - |
0.1529 | 6200 | 0.0003 | - |
0.1542 | 6250 | 0.0001 | - |
0.1554 | 6300 | 0.0003 | - |
0.1566 | 6350 | 0.0001 | - |
0.1579 | 6400 | 0.0001 | - |
0.1591 | 6450 | 0.0002 | - |
0.1603 | 6500 | 0.0001 | - |
0.1616 | 6550 | 0.0001 | - |
0.1628 | 6600 | 0.0001 | - |
0.1640 | 6650 | 0.0001 | - |
0.1653 | 6700 | 0.0002 | - |
0.1665 | 6750 | 0.0001 | - |
0.1677 | 6800 | 0.0001 | - |
0.1690 | 6850 | 0.0001 | - |
0.1702 | 6900 | 0.0001 | - |
0.1714 | 6950 | 0.0001 | - |
0.1727 | 7000 | 0.0001 | - |
0.1739 | 7050 | 0.0001 | - |
0.1751 | 7100 | 0.0001 | - |
0.1764 | 7150 | 0.0001 | - |
0.1776 | 7200 | 0.0001 | - |
0.1788 | 7250 | 0.0001 | - |
0.1801 | 7300 | 0.0001 | - |
0.1813 | 7350 | 0.0001 | - |
0.1825 | 7400 | 0.0001 | - |
0.1838 | 7450 | 0.0001 | - |
0.1850 | 7500 | 0.0001 | - |
0.1862 | 7550 | 0.0001 | - |
0.1875 | 7600 | 0.0 | - |
0.1887 | 7650 | 0.0001 | - |
0.1899 | 7700 | 0.0001 | - |
0.1912 | 7750 | 0.0001 | - |
0.1924 | 7800 | 0.0001 | - |
0.1936 | 7850 | 0.0 | - |
0.1949 | 7900 | 0.0001 | - |
0.1961 | 7950 | 0.0 | - |
0.1973 | 8000 | 0.0001 | - |
0.1986 | 8050 | 0.0 | - |
0.1998 | 8100 | 0.0 | - |
0.2010 | 8150 | 0.0 | - |
0.2023 | 8200 | 0.0 | - |
0.2035 | 8250 | 0.0 | - |
0.2047 | 8300 | 0.0 | - |
0.2060 | 8350 | 0.0 | - |
0.2072 | 8400 | 0.0001 | - |
0.2084 | 8450 | 0.0 | - |
0.2097 | 8500 | 0.0002 | - |
0.2109 | 8550 | 0.0 | - |
0.2121 | 8600 | 0.0 | - |
0.2134 | 8650 | 0.0 | - |
0.2146 | 8700 | 0.0 | - |
0.2158 | 8750 | 0.0001 | - |
0.2171 | 8800 | 0.0002 | - |
0.2183 | 8850 | 0.0 | - |
0.2195 | 8900 | 0.0001 | - |
0.2208 | 8950 | 0.0 | - |
0.2220 | 9000 | 0.0 | - |
0.2232 | 9050 | 0.0 | - |
0.2245 | 9100 | 0.0 | - |
0.2257 | 9150 | 0.0 | - |
0.2269 | 9200 | 0.0 | - |
0.2282 | 9250 | 0.0 | - |
0.2294 | 9300 | 0.0 | - |
0.2306 | 9350 | 0.0 | - |
0.2319 | 9400 | 0.0 | - |
0.2331 | 9450 | 0.0 | - |
0.2343 | 9500 | 0.0 | - |
0.2356 | 9550 | 0.0 | - |
0.2368 | 9600 | 0.0 | - |
0.2380 | 9650 | 0.0 | - |
0.2393 | 9700 | 0.0 | - |
0.2405 | 9750 | 0.0 | - |
0.2417 | 9800 | 0.0 | - |
0.2430 | 9850 | 0.0 | - |
0.2442 | 9900 | 0.0 | - |
0.2454 | 9950 | 0.0 | - |
0.2467 | 10000 | 0.0 | - |
0.2479 | 10050 | 0.0 | - |
0.2491 | 10100 | 0.0 | - |
0.2504 | 10150 | 0.0 | - |
0.2516 | 10200 | 0.0 | - |
0.2528 | 10250 | 0.0 | - |
0.2541 | 10300 | 0.0001 | - |
0.2553 | 10350 | 0.0001 | - |
0.2565 | 10400 | 0.0 | - |
0.2578 | 10450 | 0.0 | - |
0.2590 | 10500 | 0.0 | - |
0.2602 | 10550 | 0.0 | - |
0.2615 | 10600 | 0.0 | - |
0.2627 | 10650 | 0.0 | - |
0.2639 | 10700 | 0.0 | - |
0.2652 | 10750 | 0.0 | - |
0.2664 | 10800 | 0.0 | - |
0.2676 | 10850 | 0.0 | - |
0.2689 | 10900 | 0.0 | - |
0.2701 | 10950 | 0.0 | - |
0.2713 | 11000 | 0.0 | - |
0.2726 | 11050 | 0.0 | - |
0.2738 | 11100 | 0.0 | - |
0.2750 | 11150 | 0.0 | - |
0.2763 | 11200 | 0.0 | - |
0.2775 | 11250 | 0.0 | - |
0.2787 | 11300 | 0.0 | - |
0.2800 | 11350 | 0.0 | - |
0.2812 | 11400 | 0.0 | - |
0.2824 | 11450 | 0.0 | - |
0.2837 | 11500 | 0.0 | - |
0.2849 | 11550 | 0.0 | - |
0.2861 | 11600 | 0.0 | - |
0.2874 | 11650 | 0.0001 | - |
0.2886 | 11700 | 0.0301 | - |
0.2898 | 11750 | 0.0 | - |
0.2911 | 11800 | 0.0 | - |
0.2923 | 11850 | 0.0 | - |
0.2935 | 11900 | 0.0 | - |
0.2948 | 11950 | 0.0 | - |
0.2960 | 12000 | 0.0 | - |
0.2972 | 12050 | 0.0 | - |
0.2985 | 12100 | 0.0 | - |
0.2997 | 12150 | 0.0 | - |
0.3009 | 12200 | 0.0001 | - |
0.3022 | 12250 | 0.0 | - |
0.3034 | 12300 | 0.0 | - |
0.3046 | 12350 | 0.0 | - |
0.3059 | 12400 | 0.0 | - |
0.3071 | 12450 | 0.0 | - |
0.3083 | 12500 | 0.0 | - |
0.3096 | 12550 | 0.0 | - |
0.3108 | 12600 | 0.0 | - |
0.3120 | 12650 | 0.0 | - |
0.3133 | 12700 | 0.0 | - |
0.3145 | 12750 | 0.0 | - |
0.3157 | 12800 | 0.0 | - |
0.3170 | 12850 | 0.0 | - |
0.3182 | 12900 | 0.0 | - |
0.3194 | 12950 | 0.0 | - |
0.3207 | 13000 | 0.0 | - |
0.3219 | 13050 | 0.0001 | - |
0.3231 | 13100 | 0.0 | - |
0.3244 | 13150 | 0.0 | - |
0.3256 | 13200 | 0.0 | - |
0.3268 | 13250 | 0.0 | - |
0.3281 | 13300 | 0.0 | - |
0.3293 | 13350 | 0.0 | - |
0.3305 | 13400 | 0.0 | - |
0.3318 | 13450 | 0.0 | - |
0.3330 | 13500 | 0.0 | - |
0.3342 | 13550 | 0.0 | - |
0.3355 | 13600 | 0.0 | - |
0.3367 | 13650 | 0.0 | - |
0.3379 | 13700 | 0.0 | - |
0.3392 | 13750 | 0.0 | - |
0.3404 | 13800 | 0.0 | - |
0.3416 | 13850 | 0.0 | - |
0.3429 | 13900 | 0.0 | - |
0.3441 | 13950 | 0.0 | - |
0.3453 | 14000 | 0.0 | - |
0.3466 | 14050 | 0.0 | - |
0.3478 | 14100 | 0.0 | - |
0.3490 | 14150 | 0.0 | - |
0.3503 | 14200 | 0.0 | - |
0.3515 | 14250 | 0.0 | - |
0.3527 | 14300 | 0.0 | - |
0.3540 | 14350 | 0.0 | - |
0.3552 | 14400 | 0.0001 | - |
0.3564 | 14450 | 0.0 | - |
0.3577 | 14500 | 0.0 | - |
0.3589 | 14550 | 0.0 | - |
0.3601 | 14600 | 0.0 | - |
0.3614 | 14650 | 0.0 | - |
0.3626 | 14700 | 0.0 | - |
0.3638 | 14750 | 0.0 | - |
0.3651 | 14800 | 0.0 | - |
0.3663 | 14850 | 0.0 | - |
0.3675 | 14900 | 0.0 | - |
0.3688 | 14950 | 0.0 | - |
0.3700 | 15000 | 0.0 | - |
0.3712 | 15050 | 0.0 | - |
0.3725 | 15100 | 0.0 | - |
0.3737 | 15150 | 0.0 | - |
0.3749 | 15200 | 0.0 | - |
0.3762 | 15250 | 0.0 | - |
0.3774 | 15300 | 0.0 | - |
0.3786 | 15350 | 0.0 | - |
0.3799 | 15400 | 0.0 | - |
0.3811 | 15450 | 0.0 | - |
0.3823 | 15500 | 0.0 | - |
0.3836 | 15550 | 0.0 | - |
0.3848 | 15600 | 0.0 | - |
0.3860 | 15650 | 0.0 | - |
0.3873 | 15700 | 0.0 | - |
0.3885 | 15750 | 0.0 | - |
0.3897 | 15800 | 0.0001 | - |
0.3910 | 15850 | 0.0 | - |
0.3922 | 15900 | 0.0 | - |
0.3934 | 15950 | 0.0 | - |
0.3947 | 16000 | 0.0 | - |
0.3959 | 16050 | 0.0 | - |
0.3971 | 16100 | 0.0 | - |
0.3984 | 16150 | 0.0 | - |
0.3996 | 16200 | 0.0 | - |
0.4008 | 16250 | 0.0 | - |
0.4021 | 16300 | 0.0 | - |
0.4033 | 16350 | 0.0 | - |
0.4045 | 16400 | 0.0 | - |
0.4058 | 16450 | 0.0001 | - |
0.4070 | 16500 | 0.0 | - |
0.4082 | 16550 | 0.0 | - |
0.4095 | 16600 | 0.0 | - |
0.4107 | 16650 | 0.0 | - |
0.4119 | 16700 | 0.0 | - |
0.4132 | 16750 | 0.0 | - |
0.4144 | 16800 | 0.0001 | - |
0.4156 | 16850 | 0.0 | - |
0.4169 | 16900 | 0.0 | - |
0.4181 | 16950 | 0.0 | - |
0.4193 | 17000 | 0.0 | - |
0.4206 | 17050 | 0.0 | - |
0.4218 | 17100 | 0.0 | - |
0.4230 | 17150 | 0.0 | - |
0.4243 | 17200 | 0.0 | - |
0.4255 | 17250 | 0.0 | - |
0.4267 | 17300 | 0.0 | - |
0.4280 | 17350 | 0.0 | - |
0.4292 | 17400 | 0.0 | - |
0.4304 | 17450 | 0.0 | - |
0.4317 | 17500 | 0.0 | - |
0.4329 | 17550 | 0.0 | - |
0.4341 | 17600 | 0.0 | - |
0.4354 | 17650 | 0.0 | - |
0.4366 | 17700 | 0.0 | - |
0.4378 | 17750 | 0.0 | - |
0.4391 | 17800 | 0.0 | - |
0.4403 | 17850 | 0.0 | - |
0.4415 | 17900 | 0.0 | - |
0.4428 | 17950 | 0.0 | - |
0.4440 | 18000 | 0.0 | - |
0.4452 | 18050 | 0.0 | - |
0.4465 | 18100 | 0.0 | - |
0.4477 | 18150 | 0.0 | - |
0.4489 | 18200 | 0.0 | - |
0.4502 | 18250 | 0.0 | - |
0.4514 | 18300 | 0.0 | - |
0.4526 | 18350 | 0.0 | - |
0.4539 | 18400 | 0.0 | - |
0.4551 | 18450 | 0.0001 | - |
0.4563 | 18500 | 0.0 | - |
0.4576 | 18550 | 0.0 | - |
0.4588 | 18600 | 0.0 | - |
0.4600 | 18650 | 0.0 | - |
0.4613 | 18700 | 0.0 | - |
0.4625 | 18750 | 0.0 | - |
0.4637 | 18800 | 0.0 | - |
0.4650 | 18850 | 0.0 | - |
0.4662 | 18900 | 0.0 | - |
0.4674 | 18950 | 0.0 | - |
0.4687 | 19000 | 0.0 | - |
0.4699 | 19050 | 0.0 | - |
0.4711 | 19100 | 0.0 | - |
0.4724 | 19150 | 0.0 | - |
0.4736 | 19200 | 0.0 | - |
0.4748 | 19250 | 0.0 | - |
0.4761 | 19300 | 0.0 | - |
0.4773 | 19350 | 0.0 | - |
0.4785 | 19400 | 0.0 | - |
0.4798 | 19450 | 0.0 | - |
0.4810 | 19500 | 0.0 | - |
0.4822 | 19550 | 0.0 | - |
0.4835 | 19600 | 0.0 | - |
0.4847 | 19650 | 0.0 | - |
0.4859 | 19700 | 0.0 | - |
0.4872 | 19750 | 0.0 | - |
0.4884 | 19800 | 0.0 | - |
0.4896 | 19850 | 0.0 | - |
0.4909 | 19900 | 0.0 | - |
0.4921 | 19950 | 0.0 | - |
0.4933 | 20000 | 0.0 | - |
0.4946 | 20050 | 0.0 | - |
0.4958 | 20100 | 0.0 | - |
0.4970 | 20150 | 0.0 | - |
0.4983 | 20200 | 0.0 | - |
0.4995 | 20250 | 0.0 | - |
0.5007 | 20300 | 0.0 | - |
0.5020 | 20350 | 0.0 | - |
0.5032 | 20400 | 0.0001 | - |
0.5044 | 20450 | 0.0 | - |
0.5057 | 20500 | 0.0 | - |
0.5069 | 20550 | 0.0 | - |
0.5081 | 20600 | 0.0 | - |
0.5094 | 20650 | 0.0 | - |
0.5106 | 20700 | 0.0 | - |
0.5118 | 20750 | 0.0 | - |
0.5131 | 20800 | 0.0 | - |
0.5143 | 20850 | 0.0 | - |
0.5155 | 20900 | 0.0 | - |
0.5168 | 20950 | 0.0 | - |
0.5180 | 21000 | 0.0 | - |
0.5192 | 21050 | 0.0 | - |
0.5205 | 21100 | 0.0 | - |
0.5217 | 21150 | 0.0001 | - |
0.5229 | 21200 | 0.0 | - |
0.5242 | 21250 | 0.0 | - |
0.5254 | 21300 | 0.0 | - |
0.5266 | 21350 | 0.0 | - |
0.5279 | 21400 | 0.0 | - |
0.5291 | 21450 | 0.0001 | - |
0.5303 | 21500 | 0.0 | - |
0.5316 | 21550 | 0.0 | - |
0.5328 | 21600 | 0.0 | - |
0.5340 | 21650 | 0.0 | - |
0.5353 | 21700 | 0.0 | - |
0.5365 | 21750 | 0.0 | - |
0.5377 | 21800 | 0.0 | - |
0.5390 | 21850 | 0.0 | - |
0.5402 | 21900 | 0.0 | - |
0.5414 | 21950 | 0.0 | - |
0.5427 | 22000 | 0.0 | - |
0.5439 | 22050 | 0.0 | - |
0.5451 | 22100 | 0.0 | - |
0.5464 | 22150 | 0.0 | - |
0.5476 | 22200 | 0.0 | - |
0.5488 | 22250 | 0.0 | - |
0.5501 | 22300 | 0.0001 | - |
0.5513 | 22350 | 0.0 | - |
0.5525 | 22400 | 0.0 | - |
0.5538 | 22450 | 0.0 | - |
0.5550 | 22500 | 0.0 | - |
0.5562 | 22550 | 0.0 | - |
0.5575 | 22600 | 0.0 | - |
0.5587 | 22650 | 0.0 | - |
0.5599 | 22700 | 0.0 | - |
0.5612 | 22750 | 0.0 | - |
0.5624 | 22800 | 0.0 | - |
0.5636 | 22850 | 0.0 | - |
0.5649 | 22900 | 0.0 | - |
0.5661 | 22950 | 0.0 | - |
0.5673 | 23000 | 0.0 | - |
0.5686 | 23050 | 0.0 | - |
0.5698 | 23100 | 0.0 | - |
0.5710 | 23150 | 0.0 | - |
0.5723 | 23200 | 0.0 | - |
0.5735 | 23250 | 0.0 | - |
0.5747 | 23300 | 0.0 | - |
0.5760 | 23350 | 0.0 | - |
0.5772 | 23400 | 0.0 | - |
0.5784 | 23450 | 0.0 | - |
0.5797 | 23500 | 0.0 | - |
0.5809 | 23550 | 0.0 | - |
0.5821 | 23600 | 0.0 | - |
0.5834 | 23650 | 0.0 | - |
0.5846 | 23700 | 0.0 | - |
0.5858 | 23750 | 0.0 | - |
0.5871 | 23800 | 0.0001 | - |
0.5883 | 23850 | 0.0 | - |
0.5895 | 23900 | 0.0 | - |
0.5908 | 23950 | 0.0 | - |
0.5920 | 24000 | 0.0 | - |
0.5932 | 24050 | 0.0 | - |
0.5945 | 24100 | 0.0 | - |
0.5957 | 24150 | 0.0 | - |
0.5969 | 24200 | 0.0 | - |
0.5982 | 24250 | 0.0 | - |
0.5994 | 24300 | 0.0 | - |
0.6006 | 24350 | 0.0 | - |
0.6019 | 24400 | 0.0 | - |
0.6031 | 24450 | 0.0 | - |
0.6043 | 24500 | 0.0 | - |
0.6056 | 24550 | 0.0 | - |
0.6068 | 24600 | 0.0 | - |
0.6080 | 24650 | 0.0 | - |
0.6093 | 24700 | 0.0 | - |
0.6105 | 24750 | 0.0 | - |
0.6117 | 24800 | 0.0 | - |
0.6130 | 24850 | 0.0001 | - |
0.6142 | 24900 | 0.0 | - |
0.6154 | 24950 | 0.0 | - |
0.6167 | 25000 | 0.0001 | - |
0.6179 | 25050 | 0.0 | - |
0.6191 | 25100 | 0.0 | - |
0.6204 | 25150 | 0.0 | - |
0.6216 | 25200 | 0.0 | - |
0.6228 | 25250 | 0.0 | - |
0.6241 | 25300 | 0.0 | - |
0.6253 | 25350 | 0.0 | - |
0.6265 | 25400 | 0.0 | - |
0.6278 | 25450 | 0.0 | - |
0.6290 | 25500 | 0.0 | - |
0.6302 | 25550 | 0.0 | - |
0.6315 | 25600 | 0.0 | - |
0.6327 | 25650 | 0.0 | - |
0.6339 | 25700 | 0.0 | - |
0.6352 | 25750 | 0.0001 | - |
0.6364 | 25800 | 0.0 | - |
0.6376 | 25850 | 0.0 | - |
0.6389 | 25900 | 0.0 | - |
0.6401 | 25950 | 0.0 | - |
0.6413 | 26000 | 0.0 | - |
0.6426 | 26050 | 0.0 | - |
0.6438 | 26100 | 0.0 | - |
0.6450 | 26150 | 0.0 | - |
0.6463 | 26200 | 0.0 | - |
0.6475 | 26250 | 0.0 | - |
0.6487 | 26300 | 0.0 | - |
0.6500 | 26350 | 0.0 | - |
0.6512 | 26400 | 0.0 | - |
0.6524 | 26450 | 0.0 | - |
0.6537 | 26500 | 0.0 | - |
0.6549 | 26550 | 0.0 | - |
0.6561 | 26600 | 0.0 | - |
0.6574 | 26650 | 0.0 | - |
0.6586 | 26700 | 0.0 | - |
0.6598 | 26750 | 0.0 | - |
0.6611 | 26800 | 0.0 | - |
0.6623 | 26850 | 0.0 | - |
0.6635 | 26900 | 0.0 | - |
0.6648 | 26950 | 0.0 | - |
0.6660 | 27000 | 0.0 | - |
0.6672 | 27050 | 0.0 | - |
0.6685 | 27100 | 0.0 | - |
0.6697 | 27150 | 0.0 | - |
0.6709 | 27200 | 0.0 | - |
0.6722 | 27250 | 0.0 | - |
0.6734 | 27300 | 0.0 | - |
0.6746 | 27350 | 0.0 | - |
0.6759 | 27400 | 0.0 | - |
0.6771 | 27450 | 0.0 | - |
0.6783 | 27500 | 0.0 | - |
0.6796 | 27550 | 0.0 | - |
0.6808 | 27600 | 0.0 | - |
0.6820 | 27650 | 0.0 | - |
0.6833 | 27700 | 0.0 | - |
0.6845 | 27750 | 0.0 | - |
0.6857 | 27800 | 0.0 | - |
0.6870 | 27850 | 0.0 | - |
0.6882 | 27900 | 0.0 | - |
0.6894 | 27950 | 0.0 | - |
0.6907 | 28000 | 0.0 | - |
0.6919 | 28050 | 0.0 | - |
0.6931 | 28100 | 0.0 | - |
0.6944 | 28150 | 0.0 | - |
0.6956 | 28200 | 0.0 | - |
0.6968 | 28250 | 0.0 | - |
0.6981 | 28300 | 0.0 | - |
0.6993 | 28350 | 0.0 | - |
0.7005 | 28400 | 0.0 | - |
0.7018 | 28450 | 0.0 | - |
0.7030 | 28500 | 0.0 | - |
0.7042 | 28550 | 0.0 | - |
0.7055 | 28600 | 0.0 | - |
0.7067 | 28650 | 0.0 | - |
0.7079 | 28700 | 0.0 | - |
0.7092 | 28750 | 0.0 | - |
0.7104 | 28800 | 0.0 | - |
0.7116 | 28850 | 0.0 | - |
0.7129 | 28900 | 0.0 | - |
0.7141 | 28950 | 0.0 | - |
0.7153 | 29000 | 0.0 | - |
0.7166 | 29050 | 0.0 | - |
0.7178 | 29100 | 0.0 | - |
0.7190 | 29150 | 0.0 | - |
0.7203 | 29200 | 0.0001 | - |
0.7215 | 29250 | 0.0 | - |
0.7227 | 29300 | 0.0 | - |
0.7240 | 29350 | 0.0 | - |
0.7252 | 29400 | 0.0 | - |
0.7264 | 29450 | 0.0 | - |
0.7277 | 29500 | 0.0 | - |
0.7289 | 29550 | 0.0 | - |
0.7301 | 29600 | 0.0 | - |
0.7314 | 29650 | 0.0 | - |
0.7326 | 29700 | 0.0 | - |
0.7338 | 29750 | 0.0 | - |
0.7351 | 29800 | 0.0 | - |
0.7363 | 29850 | 0.0 | - |
0.7375 | 29900 | 0.0 | - |
0.7388 | 29950 | 0.0 | - |
0.7400 | 30000 | 0.0 | - |
0.7412 | 30050 | 0.0 | - |
0.7425 | 30100 | 0.0 | - |
0.7437 | 30150 | 0.0 | - |
0.7449 | 30200 | 0.0 | - |
0.7462 | 30250 | 0.0 | - |
0.7474 | 30300 | 0.0 | - |
0.7486 | 30350 | 0.0 | - |
0.7499 | 30400 | 0.0 | - |
0.7511 | 30450 | 0.0 | - |
0.7523 | 30500 | 0.0 | - |
0.7536 | 30550 | 0.0 | - |
0.7548 | 30600 | 0.0 | - |
0.7560 | 30650 | 0.0 | - |
0.7573 | 30700 | 0.0001 | - |
0.7585 | 30750 | 0.0 | - |
0.7597 | 30800 | 0.0 | - |
0.7610 | 30850 | 0.0 | - |
0.7622 | 30900 | 0.0 | - |
0.7634 | 30950 | 0.0 | - |
0.7647 | 31000 | 0.0 | - |
0.7659 | 31050 | 0.0 | - |
0.7671 | 31100 | 0.0 | - |
0.7684 | 31150 | 0.0 | - |
0.7696 | 31200 | 0.0 | - |
0.7708 | 31250 | 0.0 | - |
0.7721 | 31300 | 0.0 | - |
0.7733 | 31350 | 0.0 | - |
0.7745 | 31400 | 0.0 | - |
0.7758 | 31450 | 0.0 | - |
0.7770 | 31500 | 0.0 | - |
0.7782 | 31550 | 0.0 | - |
0.7795 | 31600 | 0.0 | - |
0.7807 | 31650 | 0.0 | - |
0.7819 | 31700 | 0.0 | - |
0.7832 | 31750 | 0.0 | - |
0.7844 | 31800 | 0.0 | - |
0.7856 | 31850 | 0.0 | - |
0.7869 | 31900 | 0.0 | - |
0.7881 | 31950 | 0.0 | - |
0.7893 | 32000 | 0.0 | - |
0.7906 | 32050 | 0.0 | - |
0.7918 | 32100 | 0.0 | - |
0.7930 | 32150 | 0.0 | - |
0.7943 | 32200 | 0.0 | - |
0.7955 | 32250 | 0.0 | - |
0.7967 | 32300 | 0.0 | - |
0.7980 | 32350 | 0.0 | - |
0.7992 | 32400 | 0.0 | - |
0.8004 | 32450 | 0.0 | - |
0.8017 | 32500 | 0.0 | - |
0.8029 | 32550 | 0.0 | - |
0.8041 | 32600 | 0.0 | - |
0.8054 | 32650 | 0.0 | - |
0.8066 | 32700 | 0.0 | - |
0.8078 | 32750 | 0.0 | - |
0.8091 | 32800 | 0.0 | - |
0.8103 | 32850 | 0.0 | - |
0.8115 | 32900 | 0.0 | - |
0.8128 | 32950 | 0.0 | - |
0.8140 | 33000 | 0.0 | - |
0.8152 | 33050 | 0.0 | - |
0.8165 | 33100 | 0.0 | - |
0.8177 | 33150 | 0.0 | - |
0.8189 | 33200 | 0.0 | - |
0.8202 | 33250 | 0.0 | - |
0.8214 | 33300 | 0.0 | - |
0.8226 | 33350 | 0.0 | - |
0.8239 | 33400 | 0.0 | - |
0.8251 | 33450 | 0.0001 | - |
0.8263 | 33500 | 0.0 | - |
0.8276 | 33550 | 0.0 | - |
0.8288 | 33600 | 0.0 | - |
0.8300 | 33650 | 0.0 | - |
0.8313 | 33700 | 0.0 | - |
0.8325 | 33750 | 0.0 | - |
0.8337 | 33800 | 0.0 | - |
0.8350 | 33850 | 0.0 | - |
0.8362 | 33900 | 0.0 | - |
0.8374 | 33950 | 0.0 | - |
0.8387 | 34000 | 0.0 | - |
0.8399 | 34050 | 0.0 | - |
0.8411 | 34100 | 0.0 | - |
0.8424 | 34150 | 0.0 | - |
0.8436 | 34200 | 0.0 | - |
0.8448 | 34250 | 0.0 | - |
0.8461 | 34300 | 0.0 | - |
0.8473 | 34350 | 0.0 | - |
0.8485 | 34400 | 0.0 | - |
0.8498 | 34450 | 0.0 | - |
0.8510 | 34500 | 0.0 | - |
0.8522 | 34550 | 0.0 | - |
0.8535 | 34600 | 0.0 | - |
0.8547 | 34650 | 0.0 | - |
0.8559 | 34700 | 0.0 | - |
0.8572 | 34750 | 0.0 | - |
0.8584 | 34800 | 0.0 | - |
0.8596 | 34850 | 0.0 | - |
0.8609 | 34900 | 0.0 | - |
0.8621 | 34950 | 0.0 | - |
0.8633 | 35000 | 0.0 | - |
0.8646 | 35050 | 0.0 | - |
0.8658 | 35100 | 0.0 | - |
0.8670 | 35150 | 0.0 | - |
0.8683 | 35200 | 0.0 | - |
0.8695 | 35250 | 0.0 | - |
0.8707 | 35300 | 0.0 | - |
0.8720 | 35350 | 0.0 | - |
0.8732 | 35400 | 0.0 | - |
0.8744 | 35450 | 0.0 | - |
0.8757 | 35500 | 0.0 | - |
0.8769 | 35550 | 0.0 | - |
0.8781 | 35600 | 0.0 | - |
0.8794 | 35650 | 0.0 | - |
0.8806 | 35700 | 0.0 | - |
0.8818 | 35750 | 0.0 | - |
0.8831 | 35800 | 0.0 | - |
0.8843 | 35850 | 0.0 | - |
0.8855 | 35900 | 0.0 | - |
0.8868 | 35950 | 0.0 | - |
0.8880 | 36000 | 0.0 | - |
0.8892 | 36050 | 0.0 | - |
0.8905 | 36100 | 0.0 | - |
0.8917 | 36150 | 0.0 | - |
0.8929 | 36200 | 0.0 | - |
0.8942 | 36250 | 0.0 | - |
0.8954 | 36300 | 0.0 | - |
0.8966 | 36350 | 0.0 | - |
0.8979 | 36400 | 0.0 | - |
0.8991 | 36450 | 0.0 | - |
0.9003 | 36500 | 0.0 | - |
0.9016 | 36550 | 0.0 | - |
0.9028 | 36600 | 0.0 | - |
0.9040 | 36650 | 0.0 | - |
0.9053 | 36700 | 0.0 | - |
0.9065 | 36750 | 0.0 | - |
0.9077 | 36800 | 0.0 | - |
0.9090 | 36850 | 0.0 | - |
0.9102 | 36900 | 0.0 | - |
0.9114 | 36950 | 0.0 | - |
0.9127 | 37000 | 0.0 | - |
0.9139 | 37050 | 0.0 | - |
0.9151 | 37100 | 0.0 | - |
0.9164 | 37150 | 0.0 | - |
0.9176 | 37200 | 0.0 | - |
0.9188 | 37250 | 0.0 | - |
0.9201 | 37300 | 0.0 | - |
0.9213 | 37350 | 0.0 | - |
0.9225 | 37400 | 0.0 | - |
0.9238 | 37450 | 0.0 | - |
0.9250 | 37500 | 0.0 | - |
0.9262 | 37550 | 0.0 | - |
0.9275 | 37600 | 0.0 | - |
0.9287 | 37650 | 0.0 | - |
0.9299 | 37700 | 0.0 | - |
0.9312 | 37750 | 0.0 | - |
0.9324 | 37800 | 0.0 | - |
0.9336 | 37850 | 0.0 | - |
0.9349 | 37900 | 0.0 | - |
0.9361 | 37950 | 0.0 | - |
0.9373 | 38000 | 0.0 | - |
0.9386 | 38050 | 0.0 | - |
0.9398 | 38100 | 0.0 | - |
0.9410 | 38150 | 0.0 | - |
0.9423 | 38200 | 0.0 | - |
0.9435 | 38250 | 0.0 | - |
0.9447 | 38300 | 0.0 | - |
0.9460 | 38350 | 0.0 | - |
0.9472 | 38400 | 0.0 | - |
0.9484 | 38450 | 0.0 | - |
0.9497 | 38500 | 0.0 | - |
0.9509 | 38550 | 0.0 | - |
0.9521 | 38600 | 0.0 | - |
0.9534 | 38650 | 0.0 | - |
0.9546 | 38700 | 0.0 | - |
0.9558 | 38750 | 0.0 | - |
0.9571 | 38800 | 0.0 | - |
0.9583 | 38850 | 0.0 | - |
0.9595 | 38900 | 0.0 | - |
0.9608 | 38950 | 0.0 | - |
0.9620 | 39000 | 0.0 | - |
0.9632 | 39050 | 0.0 | - |
0.9645 | 39100 | 0.0 | - |
0.9657 | 39150 | 0.0 | - |
0.9669 | 39200 | 0.0 | - |
0.9682 | 39250 | 0.0 | - |
0.9694 | 39300 | 0.0 | - |
0.9706 | 39350 | 0.0 | - |
0.9719 | 39400 | 0.0 | - |
0.9731 | 39450 | 0.0 | - |
0.9743 | 39500 | 0.0 | - |
0.9756 | 39550 | 0.0 | - |
0.9768 | 39600 | 0.0 | - |
0.9780 | 39650 | 0.0 | - |
0.9793 | 39700 | 0.0 | - |
0.9805 | 39750 | 0.0 | - |
0.9817 | 39800 | 0.0 | - |
0.9830 | 39850 | 0.0 | - |
0.9842 | 39900 | 0.0 | - |
0.9854 | 39950 | 0.0 | - |
0.9867 | 40000 | 0.0 | - |
0.9879 | 40050 | 0.0 | - |
0.9891 | 40100 | 0.0 | - |
0.9904 | 40150 | 0.0 | - |
0.9916 | 40200 | 0.0 | - |
0.9928 | 40250 | 0.0 | - |
0.9941 | 40300 | 0.0 | - |
0.9953 | 40350 | 0.0 | - |
0.9965 | 40400 | 0.0 | - |
0.9978 | 40450 | 0.0 | - |
0.9990 | 40500 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.5.1
- Transformers: 4.38.1
- PyTorch: 2.1.0+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}