File size: 54,223 Bytes
a3c2c1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 |
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
- f1
- precision
- recall
widget:
- text: 'brand''s product, powered by product, is making waves by potentially surpassing
brand''s product in ai performance. lets not forget massive developments in ai
from brand, brand, brand and 5 new tools here''s what you need to know:'
- text: 'well... brand launches product tomorrow so it''s going to be much more exciting
than 2x! product ca: 0x09e5e172df245529b22686b77e959d3f2937feb0'
- text: 'brand''s product is product''s newest and greatest competitor yet: here''s
how you can use it within product dlvr.it/szs9nh'
- text: bad actors exploit product to write malicious codes product, ever since its
launch in november last year, has been making lots of noise. with creators experimenting
with it and getting varied results, the product became an acceptable product tool
that couldlnkd.in/drbvpbdt
- text: testing out product. i find it incredibly useful. one way to monetize it is
simply to put paid links related to the search
pipeline_tag: text-classification
inference: true
base_model: BAAI/bge-base-en-v1.5
model-index:
- name: SetFit with BAAI/bge-base-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.86
name: Accuracy
- type: f1
value:
- 0.2857142857142857
- 0.5945945945945945
- 0.9195402298850575
name: F1
- type: precision
value:
- 1.0
- 0.9166666666666666
- 0.8547008547008547
name: Precision
- type: recall
value:
- 0.16666666666666666
- 0.44
- 0.9950248756218906
name: Recall
---
# SetFit with BAAI/bge-base-en-v1.5
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co./datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit)
### Model Labels
| Label | Examples |
|:--------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| neither | <ul><li>'ai becomes so much easier to spot when you realize it can replicate, but never understand. its why product usually gives its answers in lists. its a standardized format meant to hide its ignorance to prose.'</li><li>"hakeem jeffries' tweets are getting so productian it's not even funny and boring any more. he may have brand cranking these out."</li><li>'have you tried this with product? i did this with music and got amazing results'</li></ul> |
| peak | <ul><li>'thats rad man. i have adhd and dyslexia and some other cognitive disabilities and honestly brand is a lifesaver.'</li><li>"product is like having a coding partner that understands my style, enhancing my productivity significantly. i've even changed the way i code. my code and process is more modular so it's easier to use the output from product in my code base!"</li><li>'product is an incredible tool for explaining concepts in i prompted it to describe how k-means clustering could be applied to an engagement survey. it generated sample data, explained the concept and how the insights could be applied.'</li></ul> |
| pit | <ul><li>'many similar posts popping up on my timeline frustrated with chatproduct not performing to previous levels defeats the purpose of having an ai assitant available 24/7 if it never wants to do any of the tasks you ask of it'</li><li>"the stuff brand gives is entirely too scripted *and* impractical, which is what i'm trying to avoid:/"</li><li>'so disappointed theyve programmed product to think starvation mode is real'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy | F1 | Precision | Recall |
|:--------|:---------|:-------------------------------------------------------------|:----------------------------------------------|:------------------------------------------------|
| **all** | 0.86 | [0.2857142857142857, 0.5945945945945945, 0.9195402298850575] | [1.0, 0.9166666666666666, 0.8547008547008547] | [0.16666666666666666, 0.44, 0.9950248756218906] |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("jamiehudson/725_model_v3")
# Run inference
preds = model("brand's product is product's newest and greatest competitor yet: here's how you can use it within product dlvr.it/szs9nh")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 3 | 27.8534 | 91 |
| Label | Training Sample Count |
|:--------|:----------------------|
| pit | 26 |
| peak | 51 |
| neither | 1137 |
### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:-----:|:-------------:|:---------------:|
| 0.0012 | 1 | 0.2612 | - |
| 0.0621 | 50 | 0.2009 | - |
| 0.1242 | 100 | 0.0339 | - |
| 0.1863 | 150 | 0.0062 | - |
| 0.2484 | 200 | 0.0039 | - |
| 0.3106 | 250 | 0.0017 | - |
| 0.3727 | 300 | 0.003 | - |
| 0.4348 | 350 | 0.0015 | - |
| 0.4969 | 400 | 0.002 | - |
| 0.5590 | 450 | 0.0022 | - |
| 0.6211 | 500 | 0.0013 | - |
| 0.6832 | 550 | 0.0013 | - |
| 0.7453 | 600 | 0.0014 | - |
| 0.8075 | 650 | 0.0014 | - |
| 0.8696 | 700 | 0.0012 | - |
| 0.9317 | 750 | 0.0014 | - |
| 0.9938 | 800 | 0.0016 | - |
| 0.0000 | 1 | 0.0897 | - |
| 0.0012 | 50 | 0.1107 | - |
| 0.0025 | 100 | 0.065 | - |
| 0.0037 | 150 | 0.1892 | - |
| 0.0049 | 200 | 0.0774 | - |
| 0.0062 | 250 | 0.0391 | - |
| 0.0074 | 300 | 0.117 | - |
| 0.0086 | 350 | 0.0954 | - |
| 0.0099 | 400 | 0.0292 | - |
| 0.0111 | 450 | 0.0327 | - |
| 0.0123 | 500 | 0.0041 | - |
| 0.0136 | 550 | 0.0018 | - |
| 0.0148 | 600 | 0.03 | - |
| 0.0160 | 650 | 0.0015 | - |
| 0.0173 | 700 | 0.0036 | - |
| 0.0185 | 750 | 0.0182 | - |
| 0.0197 | 800 | 0.0017 | - |
| 0.0210 | 850 | 0.0012 | - |
| 0.0222 | 900 | 0.0014 | - |
| 0.0234 | 950 | 0.0011 | - |
| 0.0247 | 1000 | 0.0014 | - |
| 0.0259 | 1050 | 0.0301 | - |
| 0.0271 | 1100 | 0.001 | - |
| 0.0284 | 1150 | 0.0011 | - |
| 0.0296 | 1200 | 0.0009 | - |
| 0.0308 | 1250 | 0.0011 | - |
| 0.0321 | 1300 | 0.0012 | - |
| 0.0333 | 1350 | 0.001 | - |
| 0.0345 | 1400 | 0.0008 | - |
| 0.0358 | 1450 | 0.005 | - |
| 0.0370 | 1500 | 0.0008 | - |
| 0.0382 | 1550 | 0.0044 | - |
| 0.0395 | 1600 | 0.0008 | - |
| 0.0407 | 1650 | 0.0007 | - |
| 0.0419 | 1700 | 0.0014 | - |
| 0.0432 | 1750 | 0.0006 | - |
| 0.0444 | 1800 | 0.001 | - |
| 0.0456 | 1850 | 0.0007 | - |
| 0.0469 | 1900 | 0.0006 | - |
| 0.0481 | 1950 | 0.0006 | - |
| 0.0493 | 2000 | 0.0005 | - |
| 0.0506 | 2050 | 0.0006 | - |
| 0.0518 | 2100 | 0.0041 | - |
| 0.0530 | 2150 | 0.0006 | - |
| 0.0543 | 2200 | 0.0006 | - |
| 0.0555 | 2250 | 0.0007 | - |
| 0.0567 | 2300 | 0.0006 | - |
| 0.0580 | 2350 | 0.0005 | - |
| 0.0592 | 2400 | 0.0007 | - |
| 0.0604 | 2450 | 0.0005 | - |
| 0.0617 | 2500 | 0.0004 | - |
| 0.0629 | 2550 | 0.0005 | - |
| 0.0641 | 2600 | 0.0004 | - |
| 0.0654 | 2650 | 0.0007 | - |
| 0.0666 | 2700 | 0.0004 | - |
| 0.0678 | 2750 | 0.0005 | - |
| 0.0691 | 2800 | 0.0004 | - |
| 0.0703 | 2850 | 0.0004 | - |
| 0.0715 | 2900 | 0.0004 | - |
| 0.0728 | 2950 | 0.0005 | - |
| 0.0740 | 3000 | 0.0004 | - |
| 0.0752 | 3050 | 0.0004 | - |
| 0.0765 | 3100 | 0.0003 | - |
| 0.0777 | 3150 | 0.0003 | - |
| 0.0789 | 3200 | 0.0003 | - |
| 0.0802 | 3250 | 0.0003 | - |
| 0.0814 | 3300 | 0.0004 | - |
| 0.0826 | 3350 | 0.0003 | - |
| 0.0839 | 3400 | 0.0003 | - |
| 0.0851 | 3450 | 0.0007 | - |
| 0.0863 | 3500 | 0.0003 | - |
| 0.0876 | 3550 | 0.0003 | - |
| 0.0888 | 3600 | 0.0004 | - |
| 0.0900 | 3650 | 0.0003 | - |
| 0.0913 | 3700 | 0.0003 | - |
| 0.0925 | 3750 | 0.0004 | - |
| 0.0937 | 3800 | 0.0004 | - |
| 0.0950 | 3850 | 0.0232 | - |
| 0.0962 | 3900 | 0.0004 | - |
| 0.0974 | 3950 | 0.0165 | - |
| 0.0987 | 4000 | 0.0003 | - |
| 0.0999 | 4050 | 0.0229 | - |
| 0.1011 | 4100 | 0.0004 | - |
| 0.1024 | 4150 | 0.0003 | - |
| 0.1036 | 4200 | 0.0004 | - |
| 0.1048 | 4250 | 0.0002 | - |
| 0.1061 | 4300 | 0.0002 | - |
| 0.1073 | 4350 | 0.0002 | - |
| 0.1085 | 4400 | 0.0003 | - |
| 0.1098 | 4450 | 0.0002 | - |
| 0.1110 | 4500 | 0.0002 | - |
| 0.1122 | 4550 | 0.0003 | - |
| 0.1135 | 4600 | 0.0002 | - |
| 0.1147 | 4650 | 0.0002 | - |
| 0.1159 | 4700 | 0.0002 | - |
| 0.1172 | 4750 | 0.0002 | - |
| 0.1184 | 4800 | 0.0002 | - |
| 0.1196 | 4850 | 0.0002 | - |
| 0.1209 | 4900 | 0.0002 | - |
| 0.1221 | 4950 | 0.0002 | - |
| 0.1233 | 5000 | 0.0002 | - |
| 0.1246 | 5050 | 0.0002 | - |
| 0.1258 | 5100 | 0.0002 | - |
| 0.1270 | 5150 | 0.0003 | - |
| 0.1283 | 5200 | 0.0001 | - |
| 0.1295 | 5250 | 0.0002 | - |
| 0.1307 | 5300 | 0.0002 | - |
| 0.1320 | 5350 | 0.0002 | - |
| 0.1332 | 5400 | 0.0001 | - |
| 0.1344 | 5450 | 0.0002 | - |
| 0.1357 | 5500 | 0.0002 | - |
| 0.1369 | 5550 | 0.0002 | - |
| 0.1381 | 5600 | 0.0001 | - |
| 0.1394 | 5650 | 0.0001 | - |
| 0.1406 | 5700 | 0.0001 | - |
| 0.1418 | 5750 | 0.0001 | - |
| 0.1431 | 5800 | 0.0001 | - |
| 0.1443 | 5850 | 0.0001 | - |
| 0.1455 | 5900 | 0.0001 | - |
| 0.1468 | 5950 | 0.0002 | - |
| 0.1480 | 6000 | 0.0001 | - |
| 0.1492 | 6050 | 0.0002 | - |
| 0.1505 | 6100 | 0.0002 | - |
| 0.1517 | 6150 | 0.0004 | - |
| 0.1529 | 6200 | 0.0003 | - |
| 0.1542 | 6250 | 0.0001 | - |
| 0.1554 | 6300 | 0.0003 | - |
| 0.1566 | 6350 | 0.0001 | - |
| 0.1579 | 6400 | 0.0001 | - |
| 0.1591 | 6450 | 0.0002 | - |
| 0.1603 | 6500 | 0.0001 | - |
| 0.1616 | 6550 | 0.0001 | - |
| 0.1628 | 6600 | 0.0001 | - |
| 0.1640 | 6650 | 0.0001 | - |
| 0.1653 | 6700 | 0.0002 | - |
| 0.1665 | 6750 | 0.0001 | - |
| 0.1677 | 6800 | 0.0001 | - |
| 0.1690 | 6850 | 0.0001 | - |
| 0.1702 | 6900 | 0.0001 | - |
| 0.1714 | 6950 | 0.0001 | - |
| 0.1727 | 7000 | 0.0001 | - |
| 0.1739 | 7050 | 0.0001 | - |
| 0.1751 | 7100 | 0.0001 | - |
| 0.1764 | 7150 | 0.0001 | - |
| 0.1776 | 7200 | 0.0001 | - |
| 0.1788 | 7250 | 0.0001 | - |
| 0.1801 | 7300 | 0.0001 | - |
| 0.1813 | 7350 | 0.0001 | - |
| 0.1825 | 7400 | 0.0001 | - |
| 0.1838 | 7450 | 0.0001 | - |
| 0.1850 | 7500 | 0.0001 | - |
| 0.1862 | 7550 | 0.0001 | - |
| 0.1875 | 7600 | 0.0 | - |
| 0.1887 | 7650 | 0.0001 | - |
| 0.1899 | 7700 | 0.0001 | - |
| 0.1912 | 7750 | 0.0001 | - |
| 0.1924 | 7800 | 0.0001 | - |
| 0.1936 | 7850 | 0.0 | - |
| 0.1949 | 7900 | 0.0001 | - |
| 0.1961 | 7950 | 0.0 | - |
| 0.1973 | 8000 | 0.0001 | - |
| 0.1986 | 8050 | 0.0 | - |
| 0.1998 | 8100 | 0.0 | - |
| 0.2010 | 8150 | 0.0 | - |
| 0.2023 | 8200 | 0.0 | - |
| 0.2035 | 8250 | 0.0 | - |
| 0.2047 | 8300 | 0.0 | - |
| 0.2060 | 8350 | 0.0 | - |
| 0.2072 | 8400 | 0.0001 | - |
| 0.2084 | 8450 | 0.0 | - |
| 0.2097 | 8500 | 0.0002 | - |
| 0.2109 | 8550 | 0.0 | - |
| 0.2121 | 8600 | 0.0 | - |
| 0.2134 | 8650 | 0.0 | - |
| 0.2146 | 8700 | 0.0 | - |
| 0.2158 | 8750 | 0.0001 | - |
| 0.2171 | 8800 | 0.0002 | - |
| 0.2183 | 8850 | 0.0 | - |
| 0.2195 | 8900 | 0.0001 | - |
| 0.2208 | 8950 | 0.0 | - |
| 0.2220 | 9000 | 0.0 | - |
| 0.2232 | 9050 | 0.0 | - |
| 0.2245 | 9100 | 0.0 | - |
| 0.2257 | 9150 | 0.0 | - |
| 0.2269 | 9200 | 0.0 | - |
| 0.2282 | 9250 | 0.0 | - |
| 0.2294 | 9300 | 0.0 | - |
| 0.2306 | 9350 | 0.0 | - |
| 0.2319 | 9400 | 0.0 | - |
| 0.2331 | 9450 | 0.0 | - |
| 0.2343 | 9500 | 0.0 | - |
| 0.2356 | 9550 | 0.0 | - |
| 0.2368 | 9600 | 0.0 | - |
| 0.2380 | 9650 | 0.0 | - |
| 0.2393 | 9700 | 0.0 | - |
| 0.2405 | 9750 | 0.0 | - |
| 0.2417 | 9800 | 0.0 | - |
| 0.2430 | 9850 | 0.0 | - |
| 0.2442 | 9900 | 0.0 | - |
| 0.2454 | 9950 | 0.0 | - |
| 0.2467 | 10000 | 0.0 | - |
| 0.2479 | 10050 | 0.0 | - |
| 0.2491 | 10100 | 0.0 | - |
| 0.2504 | 10150 | 0.0 | - |
| 0.2516 | 10200 | 0.0 | - |
| 0.2528 | 10250 | 0.0 | - |
| 0.2541 | 10300 | 0.0001 | - |
| 0.2553 | 10350 | 0.0001 | - |
| 0.2565 | 10400 | 0.0 | - |
| 0.2578 | 10450 | 0.0 | - |
| 0.2590 | 10500 | 0.0 | - |
| 0.2602 | 10550 | 0.0 | - |
| 0.2615 | 10600 | 0.0 | - |
| 0.2627 | 10650 | 0.0 | - |
| 0.2639 | 10700 | 0.0 | - |
| 0.2652 | 10750 | 0.0 | - |
| 0.2664 | 10800 | 0.0 | - |
| 0.2676 | 10850 | 0.0 | - |
| 0.2689 | 10900 | 0.0 | - |
| 0.2701 | 10950 | 0.0 | - |
| 0.2713 | 11000 | 0.0 | - |
| 0.2726 | 11050 | 0.0 | - |
| 0.2738 | 11100 | 0.0 | - |
| 0.2750 | 11150 | 0.0 | - |
| 0.2763 | 11200 | 0.0 | - |
| 0.2775 | 11250 | 0.0 | - |
| 0.2787 | 11300 | 0.0 | - |
| 0.2800 | 11350 | 0.0 | - |
| 0.2812 | 11400 | 0.0 | - |
| 0.2824 | 11450 | 0.0 | - |
| 0.2837 | 11500 | 0.0 | - |
| 0.2849 | 11550 | 0.0 | - |
| 0.2861 | 11600 | 0.0 | - |
| 0.2874 | 11650 | 0.0001 | - |
| 0.2886 | 11700 | 0.0301 | - |
| 0.2898 | 11750 | 0.0 | - |
| 0.2911 | 11800 | 0.0 | - |
| 0.2923 | 11850 | 0.0 | - |
| 0.2935 | 11900 | 0.0 | - |
| 0.2948 | 11950 | 0.0 | - |
| 0.2960 | 12000 | 0.0 | - |
| 0.2972 | 12050 | 0.0 | - |
| 0.2985 | 12100 | 0.0 | - |
| 0.2997 | 12150 | 0.0 | - |
| 0.3009 | 12200 | 0.0001 | - |
| 0.3022 | 12250 | 0.0 | - |
| 0.3034 | 12300 | 0.0 | - |
| 0.3046 | 12350 | 0.0 | - |
| 0.3059 | 12400 | 0.0 | - |
| 0.3071 | 12450 | 0.0 | - |
| 0.3083 | 12500 | 0.0 | - |
| 0.3096 | 12550 | 0.0 | - |
| 0.3108 | 12600 | 0.0 | - |
| 0.3120 | 12650 | 0.0 | - |
| 0.3133 | 12700 | 0.0 | - |
| 0.3145 | 12750 | 0.0 | - |
| 0.3157 | 12800 | 0.0 | - |
| 0.3170 | 12850 | 0.0 | - |
| 0.3182 | 12900 | 0.0 | - |
| 0.3194 | 12950 | 0.0 | - |
| 0.3207 | 13000 | 0.0 | - |
| 0.3219 | 13050 | 0.0001 | - |
| 0.3231 | 13100 | 0.0 | - |
| 0.3244 | 13150 | 0.0 | - |
| 0.3256 | 13200 | 0.0 | - |
| 0.3268 | 13250 | 0.0 | - |
| 0.3281 | 13300 | 0.0 | - |
| 0.3293 | 13350 | 0.0 | - |
| 0.3305 | 13400 | 0.0 | - |
| 0.3318 | 13450 | 0.0 | - |
| 0.3330 | 13500 | 0.0 | - |
| 0.3342 | 13550 | 0.0 | - |
| 0.3355 | 13600 | 0.0 | - |
| 0.3367 | 13650 | 0.0 | - |
| 0.3379 | 13700 | 0.0 | - |
| 0.3392 | 13750 | 0.0 | - |
| 0.3404 | 13800 | 0.0 | - |
| 0.3416 | 13850 | 0.0 | - |
| 0.3429 | 13900 | 0.0 | - |
| 0.3441 | 13950 | 0.0 | - |
| 0.3453 | 14000 | 0.0 | - |
| 0.3466 | 14050 | 0.0 | - |
| 0.3478 | 14100 | 0.0 | - |
| 0.3490 | 14150 | 0.0 | - |
| 0.3503 | 14200 | 0.0 | - |
| 0.3515 | 14250 | 0.0 | - |
| 0.3527 | 14300 | 0.0 | - |
| 0.3540 | 14350 | 0.0 | - |
| 0.3552 | 14400 | 0.0001 | - |
| 0.3564 | 14450 | 0.0 | - |
| 0.3577 | 14500 | 0.0 | - |
| 0.3589 | 14550 | 0.0 | - |
| 0.3601 | 14600 | 0.0 | - |
| 0.3614 | 14650 | 0.0 | - |
| 0.3626 | 14700 | 0.0 | - |
| 0.3638 | 14750 | 0.0 | - |
| 0.3651 | 14800 | 0.0 | - |
| 0.3663 | 14850 | 0.0 | - |
| 0.3675 | 14900 | 0.0 | - |
| 0.3688 | 14950 | 0.0 | - |
| 0.3700 | 15000 | 0.0 | - |
| 0.3712 | 15050 | 0.0 | - |
| 0.3725 | 15100 | 0.0 | - |
| 0.3737 | 15150 | 0.0 | - |
| 0.3749 | 15200 | 0.0 | - |
| 0.3762 | 15250 | 0.0 | - |
| 0.3774 | 15300 | 0.0 | - |
| 0.3786 | 15350 | 0.0 | - |
| 0.3799 | 15400 | 0.0 | - |
| 0.3811 | 15450 | 0.0 | - |
| 0.3823 | 15500 | 0.0 | - |
| 0.3836 | 15550 | 0.0 | - |
| 0.3848 | 15600 | 0.0 | - |
| 0.3860 | 15650 | 0.0 | - |
| 0.3873 | 15700 | 0.0 | - |
| 0.3885 | 15750 | 0.0 | - |
| 0.3897 | 15800 | 0.0001 | - |
| 0.3910 | 15850 | 0.0 | - |
| 0.3922 | 15900 | 0.0 | - |
| 0.3934 | 15950 | 0.0 | - |
| 0.3947 | 16000 | 0.0 | - |
| 0.3959 | 16050 | 0.0 | - |
| 0.3971 | 16100 | 0.0 | - |
| 0.3984 | 16150 | 0.0 | - |
| 0.3996 | 16200 | 0.0 | - |
| 0.4008 | 16250 | 0.0 | - |
| 0.4021 | 16300 | 0.0 | - |
| 0.4033 | 16350 | 0.0 | - |
| 0.4045 | 16400 | 0.0 | - |
| 0.4058 | 16450 | 0.0001 | - |
| 0.4070 | 16500 | 0.0 | - |
| 0.4082 | 16550 | 0.0 | - |
| 0.4095 | 16600 | 0.0 | - |
| 0.4107 | 16650 | 0.0 | - |
| 0.4119 | 16700 | 0.0 | - |
| 0.4132 | 16750 | 0.0 | - |
| 0.4144 | 16800 | 0.0001 | - |
| 0.4156 | 16850 | 0.0 | - |
| 0.4169 | 16900 | 0.0 | - |
| 0.4181 | 16950 | 0.0 | - |
| 0.4193 | 17000 | 0.0 | - |
| 0.4206 | 17050 | 0.0 | - |
| 0.4218 | 17100 | 0.0 | - |
| 0.4230 | 17150 | 0.0 | - |
| 0.4243 | 17200 | 0.0 | - |
| 0.4255 | 17250 | 0.0 | - |
| 0.4267 | 17300 | 0.0 | - |
| 0.4280 | 17350 | 0.0 | - |
| 0.4292 | 17400 | 0.0 | - |
| 0.4304 | 17450 | 0.0 | - |
| 0.4317 | 17500 | 0.0 | - |
| 0.4329 | 17550 | 0.0 | - |
| 0.4341 | 17600 | 0.0 | - |
| 0.4354 | 17650 | 0.0 | - |
| 0.4366 | 17700 | 0.0 | - |
| 0.4378 | 17750 | 0.0 | - |
| 0.4391 | 17800 | 0.0 | - |
| 0.4403 | 17850 | 0.0 | - |
| 0.4415 | 17900 | 0.0 | - |
| 0.4428 | 17950 | 0.0 | - |
| 0.4440 | 18000 | 0.0 | - |
| 0.4452 | 18050 | 0.0 | - |
| 0.4465 | 18100 | 0.0 | - |
| 0.4477 | 18150 | 0.0 | - |
| 0.4489 | 18200 | 0.0 | - |
| 0.4502 | 18250 | 0.0 | - |
| 0.4514 | 18300 | 0.0 | - |
| 0.4526 | 18350 | 0.0 | - |
| 0.4539 | 18400 | 0.0 | - |
| 0.4551 | 18450 | 0.0001 | - |
| 0.4563 | 18500 | 0.0 | - |
| 0.4576 | 18550 | 0.0 | - |
| 0.4588 | 18600 | 0.0 | - |
| 0.4600 | 18650 | 0.0 | - |
| 0.4613 | 18700 | 0.0 | - |
| 0.4625 | 18750 | 0.0 | - |
| 0.4637 | 18800 | 0.0 | - |
| 0.4650 | 18850 | 0.0 | - |
| 0.4662 | 18900 | 0.0 | - |
| 0.4674 | 18950 | 0.0 | - |
| 0.4687 | 19000 | 0.0 | - |
| 0.4699 | 19050 | 0.0 | - |
| 0.4711 | 19100 | 0.0 | - |
| 0.4724 | 19150 | 0.0 | - |
| 0.4736 | 19200 | 0.0 | - |
| 0.4748 | 19250 | 0.0 | - |
| 0.4761 | 19300 | 0.0 | - |
| 0.4773 | 19350 | 0.0 | - |
| 0.4785 | 19400 | 0.0 | - |
| 0.4798 | 19450 | 0.0 | - |
| 0.4810 | 19500 | 0.0 | - |
| 0.4822 | 19550 | 0.0 | - |
| 0.4835 | 19600 | 0.0 | - |
| 0.4847 | 19650 | 0.0 | - |
| 0.4859 | 19700 | 0.0 | - |
| 0.4872 | 19750 | 0.0 | - |
| 0.4884 | 19800 | 0.0 | - |
| 0.4896 | 19850 | 0.0 | - |
| 0.4909 | 19900 | 0.0 | - |
| 0.4921 | 19950 | 0.0 | - |
| 0.4933 | 20000 | 0.0 | - |
| 0.4946 | 20050 | 0.0 | - |
| 0.4958 | 20100 | 0.0 | - |
| 0.4970 | 20150 | 0.0 | - |
| 0.4983 | 20200 | 0.0 | - |
| 0.4995 | 20250 | 0.0 | - |
| 0.5007 | 20300 | 0.0 | - |
| 0.5020 | 20350 | 0.0 | - |
| 0.5032 | 20400 | 0.0001 | - |
| 0.5044 | 20450 | 0.0 | - |
| 0.5057 | 20500 | 0.0 | - |
| 0.5069 | 20550 | 0.0 | - |
| 0.5081 | 20600 | 0.0 | - |
| 0.5094 | 20650 | 0.0 | - |
| 0.5106 | 20700 | 0.0 | - |
| 0.5118 | 20750 | 0.0 | - |
| 0.5131 | 20800 | 0.0 | - |
| 0.5143 | 20850 | 0.0 | - |
| 0.5155 | 20900 | 0.0 | - |
| 0.5168 | 20950 | 0.0 | - |
| 0.5180 | 21000 | 0.0 | - |
| 0.5192 | 21050 | 0.0 | - |
| 0.5205 | 21100 | 0.0 | - |
| 0.5217 | 21150 | 0.0001 | - |
| 0.5229 | 21200 | 0.0 | - |
| 0.5242 | 21250 | 0.0 | - |
| 0.5254 | 21300 | 0.0 | - |
| 0.5266 | 21350 | 0.0 | - |
| 0.5279 | 21400 | 0.0 | - |
| 0.5291 | 21450 | 0.0001 | - |
| 0.5303 | 21500 | 0.0 | - |
| 0.5316 | 21550 | 0.0 | - |
| 0.5328 | 21600 | 0.0 | - |
| 0.5340 | 21650 | 0.0 | - |
| 0.5353 | 21700 | 0.0 | - |
| 0.5365 | 21750 | 0.0 | - |
| 0.5377 | 21800 | 0.0 | - |
| 0.5390 | 21850 | 0.0 | - |
| 0.5402 | 21900 | 0.0 | - |
| 0.5414 | 21950 | 0.0 | - |
| 0.5427 | 22000 | 0.0 | - |
| 0.5439 | 22050 | 0.0 | - |
| 0.5451 | 22100 | 0.0 | - |
| 0.5464 | 22150 | 0.0 | - |
| 0.5476 | 22200 | 0.0 | - |
| 0.5488 | 22250 | 0.0 | - |
| 0.5501 | 22300 | 0.0001 | - |
| 0.5513 | 22350 | 0.0 | - |
| 0.5525 | 22400 | 0.0 | - |
| 0.5538 | 22450 | 0.0 | - |
| 0.5550 | 22500 | 0.0 | - |
| 0.5562 | 22550 | 0.0 | - |
| 0.5575 | 22600 | 0.0 | - |
| 0.5587 | 22650 | 0.0 | - |
| 0.5599 | 22700 | 0.0 | - |
| 0.5612 | 22750 | 0.0 | - |
| 0.5624 | 22800 | 0.0 | - |
| 0.5636 | 22850 | 0.0 | - |
| 0.5649 | 22900 | 0.0 | - |
| 0.5661 | 22950 | 0.0 | - |
| 0.5673 | 23000 | 0.0 | - |
| 0.5686 | 23050 | 0.0 | - |
| 0.5698 | 23100 | 0.0 | - |
| 0.5710 | 23150 | 0.0 | - |
| 0.5723 | 23200 | 0.0 | - |
| 0.5735 | 23250 | 0.0 | - |
| 0.5747 | 23300 | 0.0 | - |
| 0.5760 | 23350 | 0.0 | - |
| 0.5772 | 23400 | 0.0 | - |
| 0.5784 | 23450 | 0.0 | - |
| 0.5797 | 23500 | 0.0 | - |
| 0.5809 | 23550 | 0.0 | - |
| 0.5821 | 23600 | 0.0 | - |
| 0.5834 | 23650 | 0.0 | - |
| 0.5846 | 23700 | 0.0 | - |
| 0.5858 | 23750 | 0.0 | - |
| 0.5871 | 23800 | 0.0001 | - |
| 0.5883 | 23850 | 0.0 | - |
| 0.5895 | 23900 | 0.0 | - |
| 0.5908 | 23950 | 0.0 | - |
| 0.5920 | 24000 | 0.0 | - |
| 0.5932 | 24050 | 0.0 | - |
| 0.5945 | 24100 | 0.0 | - |
| 0.5957 | 24150 | 0.0 | - |
| 0.5969 | 24200 | 0.0 | - |
| 0.5982 | 24250 | 0.0 | - |
| 0.5994 | 24300 | 0.0 | - |
| 0.6006 | 24350 | 0.0 | - |
| 0.6019 | 24400 | 0.0 | - |
| 0.6031 | 24450 | 0.0 | - |
| 0.6043 | 24500 | 0.0 | - |
| 0.6056 | 24550 | 0.0 | - |
| 0.6068 | 24600 | 0.0 | - |
| 0.6080 | 24650 | 0.0 | - |
| 0.6093 | 24700 | 0.0 | - |
| 0.6105 | 24750 | 0.0 | - |
| 0.6117 | 24800 | 0.0 | - |
| 0.6130 | 24850 | 0.0001 | - |
| 0.6142 | 24900 | 0.0 | - |
| 0.6154 | 24950 | 0.0 | - |
| 0.6167 | 25000 | 0.0001 | - |
| 0.6179 | 25050 | 0.0 | - |
| 0.6191 | 25100 | 0.0 | - |
| 0.6204 | 25150 | 0.0 | - |
| 0.6216 | 25200 | 0.0 | - |
| 0.6228 | 25250 | 0.0 | - |
| 0.6241 | 25300 | 0.0 | - |
| 0.6253 | 25350 | 0.0 | - |
| 0.6265 | 25400 | 0.0 | - |
| 0.6278 | 25450 | 0.0 | - |
| 0.6290 | 25500 | 0.0 | - |
| 0.6302 | 25550 | 0.0 | - |
| 0.6315 | 25600 | 0.0 | - |
| 0.6327 | 25650 | 0.0 | - |
| 0.6339 | 25700 | 0.0 | - |
| 0.6352 | 25750 | 0.0001 | - |
| 0.6364 | 25800 | 0.0 | - |
| 0.6376 | 25850 | 0.0 | - |
| 0.6389 | 25900 | 0.0 | - |
| 0.6401 | 25950 | 0.0 | - |
| 0.6413 | 26000 | 0.0 | - |
| 0.6426 | 26050 | 0.0 | - |
| 0.6438 | 26100 | 0.0 | - |
| 0.6450 | 26150 | 0.0 | - |
| 0.6463 | 26200 | 0.0 | - |
| 0.6475 | 26250 | 0.0 | - |
| 0.6487 | 26300 | 0.0 | - |
| 0.6500 | 26350 | 0.0 | - |
| 0.6512 | 26400 | 0.0 | - |
| 0.6524 | 26450 | 0.0 | - |
| 0.6537 | 26500 | 0.0 | - |
| 0.6549 | 26550 | 0.0 | - |
| 0.6561 | 26600 | 0.0 | - |
| 0.6574 | 26650 | 0.0 | - |
| 0.6586 | 26700 | 0.0 | - |
| 0.6598 | 26750 | 0.0 | - |
| 0.6611 | 26800 | 0.0 | - |
| 0.6623 | 26850 | 0.0 | - |
| 0.6635 | 26900 | 0.0 | - |
| 0.6648 | 26950 | 0.0 | - |
| 0.6660 | 27000 | 0.0 | - |
| 0.6672 | 27050 | 0.0 | - |
| 0.6685 | 27100 | 0.0 | - |
| 0.6697 | 27150 | 0.0 | - |
| 0.6709 | 27200 | 0.0 | - |
| 0.6722 | 27250 | 0.0 | - |
| 0.6734 | 27300 | 0.0 | - |
| 0.6746 | 27350 | 0.0 | - |
| 0.6759 | 27400 | 0.0 | - |
| 0.6771 | 27450 | 0.0 | - |
| 0.6783 | 27500 | 0.0 | - |
| 0.6796 | 27550 | 0.0 | - |
| 0.6808 | 27600 | 0.0 | - |
| 0.6820 | 27650 | 0.0 | - |
| 0.6833 | 27700 | 0.0 | - |
| 0.6845 | 27750 | 0.0 | - |
| 0.6857 | 27800 | 0.0 | - |
| 0.6870 | 27850 | 0.0 | - |
| 0.6882 | 27900 | 0.0 | - |
| 0.6894 | 27950 | 0.0 | - |
| 0.6907 | 28000 | 0.0 | - |
| 0.6919 | 28050 | 0.0 | - |
| 0.6931 | 28100 | 0.0 | - |
| 0.6944 | 28150 | 0.0 | - |
| 0.6956 | 28200 | 0.0 | - |
| 0.6968 | 28250 | 0.0 | - |
| 0.6981 | 28300 | 0.0 | - |
| 0.6993 | 28350 | 0.0 | - |
| 0.7005 | 28400 | 0.0 | - |
| 0.7018 | 28450 | 0.0 | - |
| 0.7030 | 28500 | 0.0 | - |
| 0.7042 | 28550 | 0.0 | - |
| 0.7055 | 28600 | 0.0 | - |
| 0.7067 | 28650 | 0.0 | - |
| 0.7079 | 28700 | 0.0 | - |
| 0.7092 | 28750 | 0.0 | - |
| 0.7104 | 28800 | 0.0 | - |
| 0.7116 | 28850 | 0.0 | - |
| 0.7129 | 28900 | 0.0 | - |
| 0.7141 | 28950 | 0.0 | - |
| 0.7153 | 29000 | 0.0 | - |
| 0.7166 | 29050 | 0.0 | - |
| 0.7178 | 29100 | 0.0 | - |
| 0.7190 | 29150 | 0.0 | - |
| 0.7203 | 29200 | 0.0001 | - |
| 0.7215 | 29250 | 0.0 | - |
| 0.7227 | 29300 | 0.0 | - |
| 0.7240 | 29350 | 0.0 | - |
| 0.7252 | 29400 | 0.0 | - |
| 0.7264 | 29450 | 0.0 | - |
| 0.7277 | 29500 | 0.0 | - |
| 0.7289 | 29550 | 0.0 | - |
| 0.7301 | 29600 | 0.0 | - |
| 0.7314 | 29650 | 0.0 | - |
| 0.7326 | 29700 | 0.0 | - |
| 0.7338 | 29750 | 0.0 | - |
| 0.7351 | 29800 | 0.0 | - |
| 0.7363 | 29850 | 0.0 | - |
| 0.7375 | 29900 | 0.0 | - |
| 0.7388 | 29950 | 0.0 | - |
| 0.7400 | 30000 | 0.0 | - |
| 0.7412 | 30050 | 0.0 | - |
| 0.7425 | 30100 | 0.0 | - |
| 0.7437 | 30150 | 0.0 | - |
| 0.7449 | 30200 | 0.0 | - |
| 0.7462 | 30250 | 0.0 | - |
| 0.7474 | 30300 | 0.0 | - |
| 0.7486 | 30350 | 0.0 | - |
| 0.7499 | 30400 | 0.0 | - |
| 0.7511 | 30450 | 0.0 | - |
| 0.7523 | 30500 | 0.0 | - |
| 0.7536 | 30550 | 0.0 | - |
| 0.7548 | 30600 | 0.0 | - |
| 0.7560 | 30650 | 0.0 | - |
| 0.7573 | 30700 | 0.0001 | - |
| 0.7585 | 30750 | 0.0 | - |
| 0.7597 | 30800 | 0.0 | - |
| 0.7610 | 30850 | 0.0 | - |
| 0.7622 | 30900 | 0.0 | - |
| 0.7634 | 30950 | 0.0 | - |
| 0.7647 | 31000 | 0.0 | - |
| 0.7659 | 31050 | 0.0 | - |
| 0.7671 | 31100 | 0.0 | - |
| 0.7684 | 31150 | 0.0 | - |
| 0.7696 | 31200 | 0.0 | - |
| 0.7708 | 31250 | 0.0 | - |
| 0.7721 | 31300 | 0.0 | - |
| 0.7733 | 31350 | 0.0 | - |
| 0.7745 | 31400 | 0.0 | - |
| 0.7758 | 31450 | 0.0 | - |
| 0.7770 | 31500 | 0.0 | - |
| 0.7782 | 31550 | 0.0 | - |
| 0.7795 | 31600 | 0.0 | - |
| 0.7807 | 31650 | 0.0 | - |
| 0.7819 | 31700 | 0.0 | - |
| 0.7832 | 31750 | 0.0 | - |
| 0.7844 | 31800 | 0.0 | - |
| 0.7856 | 31850 | 0.0 | - |
| 0.7869 | 31900 | 0.0 | - |
| 0.7881 | 31950 | 0.0 | - |
| 0.7893 | 32000 | 0.0 | - |
| 0.7906 | 32050 | 0.0 | - |
| 0.7918 | 32100 | 0.0 | - |
| 0.7930 | 32150 | 0.0 | - |
| 0.7943 | 32200 | 0.0 | - |
| 0.7955 | 32250 | 0.0 | - |
| 0.7967 | 32300 | 0.0 | - |
| 0.7980 | 32350 | 0.0 | - |
| 0.7992 | 32400 | 0.0 | - |
| 0.8004 | 32450 | 0.0 | - |
| 0.8017 | 32500 | 0.0 | - |
| 0.8029 | 32550 | 0.0 | - |
| 0.8041 | 32600 | 0.0 | - |
| 0.8054 | 32650 | 0.0 | - |
| 0.8066 | 32700 | 0.0 | - |
| 0.8078 | 32750 | 0.0 | - |
| 0.8091 | 32800 | 0.0 | - |
| 0.8103 | 32850 | 0.0 | - |
| 0.8115 | 32900 | 0.0 | - |
| 0.8128 | 32950 | 0.0 | - |
| 0.8140 | 33000 | 0.0 | - |
| 0.8152 | 33050 | 0.0 | - |
| 0.8165 | 33100 | 0.0 | - |
| 0.8177 | 33150 | 0.0 | - |
| 0.8189 | 33200 | 0.0 | - |
| 0.8202 | 33250 | 0.0 | - |
| 0.8214 | 33300 | 0.0 | - |
| 0.8226 | 33350 | 0.0 | - |
| 0.8239 | 33400 | 0.0 | - |
| 0.8251 | 33450 | 0.0001 | - |
| 0.8263 | 33500 | 0.0 | - |
| 0.8276 | 33550 | 0.0 | - |
| 0.8288 | 33600 | 0.0 | - |
| 0.8300 | 33650 | 0.0 | - |
| 0.8313 | 33700 | 0.0 | - |
| 0.8325 | 33750 | 0.0 | - |
| 0.8337 | 33800 | 0.0 | - |
| 0.8350 | 33850 | 0.0 | - |
| 0.8362 | 33900 | 0.0 | - |
| 0.8374 | 33950 | 0.0 | - |
| 0.8387 | 34000 | 0.0 | - |
| 0.8399 | 34050 | 0.0 | - |
| 0.8411 | 34100 | 0.0 | - |
| 0.8424 | 34150 | 0.0 | - |
| 0.8436 | 34200 | 0.0 | - |
| 0.8448 | 34250 | 0.0 | - |
| 0.8461 | 34300 | 0.0 | - |
| 0.8473 | 34350 | 0.0 | - |
| 0.8485 | 34400 | 0.0 | - |
| 0.8498 | 34450 | 0.0 | - |
| 0.8510 | 34500 | 0.0 | - |
| 0.8522 | 34550 | 0.0 | - |
| 0.8535 | 34600 | 0.0 | - |
| 0.8547 | 34650 | 0.0 | - |
| 0.8559 | 34700 | 0.0 | - |
| 0.8572 | 34750 | 0.0 | - |
| 0.8584 | 34800 | 0.0 | - |
| 0.8596 | 34850 | 0.0 | - |
| 0.8609 | 34900 | 0.0 | - |
| 0.8621 | 34950 | 0.0 | - |
| 0.8633 | 35000 | 0.0 | - |
| 0.8646 | 35050 | 0.0 | - |
| 0.8658 | 35100 | 0.0 | - |
| 0.8670 | 35150 | 0.0 | - |
| 0.8683 | 35200 | 0.0 | - |
| 0.8695 | 35250 | 0.0 | - |
| 0.8707 | 35300 | 0.0 | - |
| 0.8720 | 35350 | 0.0 | - |
| 0.8732 | 35400 | 0.0 | - |
| 0.8744 | 35450 | 0.0 | - |
| 0.8757 | 35500 | 0.0 | - |
| 0.8769 | 35550 | 0.0 | - |
| 0.8781 | 35600 | 0.0 | - |
| 0.8794 | 35650 | 0.0 | - |
| 0.8806 | 35700 | 0.0 | - |
| 0.8818 | 35750 | 0.0 | - |
| 0.8831 | 35800 | 0.0 | - |
| 0.8843 | 35850 | 0.0 | - |
| 0.8855 | 35900 | 0.0 | - |
| 0.8868 | 35950 | 0.0 | - |
| 0.8880 | 36000 | 0.0 | - |
| 0.8892 | 36050 | 0.0 | - |
| 0.8905 | 36100 | 0.0 | - |
| 0.8917 | 36150 | 0.0 | - |
| 0.8929 | 36200 | 0.0 | - |
| 0.8942 | 36250 | 0.0 | - |
| 0.8954 | 36300 | 0.0 | - |
| 0.8966 | 36350 | 0.0 | - |
| 0.8979 | 36400 | 0.0 | - |
| 0.8991 | 36450 | 0.0 | - |
| 0.9003 | 36500 | 0.0 | - |
| 0.9016 | 36550 | 0.0 | - |
| 0.9028 | 36600 | 0.0 | - |
| 0.9040 | 36650 | 0.0 | - |
| 0.9053 | 36700 | 0.0 | - |
| 0.9065 | 36750 | 0.0 | - |
| 0.9077 | 36800 | 0.0 | - |
| 0.9090 | 36850 | 0.0 | - |
| 0.9102 | 36900 | 0.0 | - |
| 0.9114 | 36950 | 0.0 | - |
| 0.9127 | 37000 | 0.0 | - |
| 0.9139 | 37050 | 0.0 | - |
| 0.9151 | 37100 | 0.0 | - |
| 0.9164 | 37150 | 0.0 | - |
| 0.9176 | 37200 | 0.0 | - |
| 0.9188 | 37250 | 0.0 | - |
| 0.9201 | 37300 | 0.0 | - |
| 0.9213 | 37350 | 0.0 | - |
| 0.9225 | 37400 | 0.0 | - |
| 0.9238 | 37450 | 0.0 | - |
| 0.9250 | 37500 | 0.0 | - |
| 0.9262 | 37550 | 0.0 | - |
| 0.9275 | 37600 | 0.0 | - |
| 0.9287 | 37650 | 0.0 | - |
| 0.9299 | 37700 | 0.0 | - |
| 0.9312 | 37750 | 0.0 | - |
| 0.9324 | 37800 | 0.0 | - |
| 0.9336 | 37850 | 0.0 | - |
| 0.9349 | 37900 | 0.0 | - |
| 0.9361 | 37950 | 0.0 | - |
| 0.9373 | 38000 | 0.0 | - |
| 0.9386 | 38050 | 0.0 | - |
| 0.9398 | 38100 | 0.0 | - |
| 0.9410 | 38150 | 0.0 | - |
| 0.9423 | 38200 | 0.0 | - |
| 0.9435 | 38250 | 0.0 | - |
| 0.9447 | 38300 | 0.0 | - |
| 0.9460 | 38350 | 0.0 | - |
| 0.9472 | 38400 | 0.0 | - |
| 0.9484 | 38450 | 0.0 | - |
| 0.9497 | 38500 | 0.0 | - |
| 0.9509 | 38550 | 0.0 | - |
| 0.9521 | 38600 | 0.0 | - |
| 0.9534 | 38650 | 0.0 | - |
| 0.9546 | 38700 | 0.0 | - |
| 0.9558 | 38750 | 0.0 | - |
| 0.9571 | 38800 | 0.0 | - |
| 0.9583 | 38850 | 0.0 | - |
| 0.9595 | 38900 | 0.0 | - |
| 0.9608 | 38950 | 0.0 | - |
| 0.9620 | 39000 | 0.0 | - |
| 0.9632 | 39050 | 0.0 | - |
| 0.9645 | 39100 | 0.0 | - |
| 0.9657 | 39150 | 0.0 | - |
| 0.9669 | 39200 | 0.0 | - |
| 0.9682 | 39250 | 0.0 | - |
| 0.9694 | 39300 | 0.0 | - |
| 0.9706 | 39350 | 0.0 | - |
| 0.9719 | 39400 | 0.0 | - |
| 0.9731 | 39450 | 0.0 | - |
| 0.9743 | 39500 | 0.0 | - |
| 0.9756 | 39550 | 0.0 | - |
| 0.9768 | 39600 | 0.0 | - |
| 0.9780 | 39650 | 0.0 | - |
| 0.9793 | 39700 | 0.0 | - |
| 0.9805 | 39750 | 0.0 | - |
| 0.9817 | 39800 | 0.0 | - |
| 0.9830 | 39850 | 0.0 | - |
| 0.9842 | 39900 | 0.0 | - |
| 0.9854 | 39950 | 0.0 | - |
| 0.9867 | 40000 | 0.0 | - |
| 0.9879 | 40050 | 0.0 | - |
| 0.9891 | 40100 | 0.0 | - |
| 0.9904 | 40150 | 0.0 | - |
| 0.9916 | 40200 | 0.0 | - |
| 0.9928 | 40250 | 0.0 | - |
| 0.9941 | 40300 | 0.0 | - |
| 0.9953 | 40350 | 0.0 | - |
| 0.9965 | 40400 | 0.0 | - |
| 0.9978 | 40450 | 0.0 | - |
| 0.9990 | 40500 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.5.1
- Transformers: 4.38.1
- PyTorch: 2.1.0+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |