metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
- f1
- precision
- recall
widget:
- text: >-
man, product/whatever is my new best friend. i like product but the
integration of product into office and product is a lot of fun. i just
spent the day feeding it my training presentation i'm preparing in my day
job and it was very helpful. almost better than humans.
- text: >-
that's great news! product is the perfect platform to share these advanced
product prompts and help more users get the most out of it!
- text: >-
after only one week's trial of the new product with brand enabled, i have
replaced my default browser product that i was using for more than 7 years
with new product. i no longer need to spend a lot of time finding answers
from a bunch of search results and web pages. it's amazing
- text: >-
very impressive. brand is finally fighting back. i am just a little
worried about the scalability of such a high context window size, since
even in their demos it took quite a while to process everything.
regardless, i am very interested in seeing what types of capabilities a
>1m token size window can unleash.
- text: >-
product the way it shows the sources is so fucking cool, this new ai is
amazing
pipeline_tag: text-classification
inference: true
base_model: BAAI/bge-base-en-v1.5
model-index:
- name: SetFit with BAAI/bge-base-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7876447876447876
name: Accuracy
- type: f1
value:
- 0.3720930232558139
- 0.4528301886792453
- 0.8720379146919431
name: F1
- type: precision
value:
- 0.23529411764705882
- 0.3
- 0.9945945945945946
name: Precision
- type: recall
value:
- 0.8888888888888888
- 0.9230769230769231
- 0.7763713080168776
name: Recall
SetFit with BAAI/bge-base-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-base-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-base-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
neither |
|
peak |
|
pit |
|
Evaluation
Metrics
Label | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|
all | 0.7876 | [0.3720930232558139, 0.4528301886792453, 0.8720379146919431] | [0.23529411764705882, 0.3, 0.9945945945945946] | [0.8888888888888888, 0.9230769230769231, 0.7763713080168776] |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("jamiehudson/725_32batch_150_sample")
# Run inference
preds = model("product the way it shows the sources is so fucking cool, this new ai is amazing")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 9 | 37.1711 | 98 |
Label | Training Sample Count |
---|---|
pit | 150 |
peak | 150 |
neither | 150 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.2383 | - |
0.0119 | 50 | 0.2395 | - |
0.0237 | 100 | 0.2129 | - |
0.0356 | 150 | 0.1317 | - |
0.0474 | 200 | 0.0695 | - |
0.0593 | 250 | 0.01 | - |
0.0711 | 300 | 0.0063 | - |
0.0830 | 350 | 0.0028 | - |
0.0948 | 400 | 0.0026 | - |
0.1067 | 450 | 0.0021 | - |
0.1185 | 500 | 0.0018 | - |
0.1304 | 550 | 0.0016 | - |
0.1422 | 600 | 0.0014 | - |
0.1541 | 650 | 0.0015 | - |
0.1659 | 700 | 0.0013 | - |
0.1778 | 750 | 0.0012 | - |
0.1896 | 800 | 0.0012 | - |
0.2015 | 850 | 0.0012 | - |
0.2133 | 900 | 0.0011 | - |
0.2252 | 950 | 0.0011 | - |
0.2370 | 1000 | 0.0009 | - |
0.2489 | 1050 | 0.001 | - |
0.2607 | 1100 | 0.0009 | - |
0.2726 | 1150 | 0.0008 | - |
0.2844 | 1200 | 0.0008 | - |
0.2963 | 1250 | 0.0009 | - |
0.3081 | 1300 | 0.0008 | - |
0.3200 | 1350 | 0.0007 | - |
0.3318 | 1400 | 0.0007 | - |
0.3437 | 1450 | 0.0007 | - |
0.3555 | 1500 | 0.0006 | - |
0.3674 | 1550 | 0.0007 | - |
0.3792 | 1600 | 0.0007 | - |
0.3911 | 1650 | 0.0008 | - |
0.4029 | 1700 | 0.0006 | - |
0.4148 | 1750 | 0.0006 | - |
0.4266 | 1800 | 0.0006 | - |
0.4385 | 1850 | 0.0006 | - |
0.4503 | 1900 | 0.0006 | - |
0.4622 | 1950 | 0.0006 | - |
0.4740 | 2000 | 0.0006 | - |
0.4859 | 2050 | 0.0005 | - |
0.4977 | 2100 | 0.0006 | - |
0.5096 | 2150 | 0.0006 | - |
0.5215 | 2200 | 0.0005 | - |
0.5333 | 2250 | 0.0005 | - |
0.5452 | 2300 | 0.0005 | - |
0.5570 | 2350 | 0.0006 | - |
0.5689 | 2400 | 0.0005 | - |
0.5807 | 2450 | 0.0005 | - |
0.5926 | 2500 | 0.0006 | - |
0.6044 | 2550 | 0.0006 | - |
0.6163 | 2600 | 0.0005 | - |
0.6281 | 2650 | 0.0005 | - |
0.6400 | 2700 | 0.0005 | - |
0.6518 | 2750 | 0.0005 | - |
0.6637 | 2800 | 0.0005 | - |
0.6755 | 2850 | 0.0005 | - |
0.6874 | 2900 | 0.0005 | - |
0.6992 | 2950 | 0.0004 | - |
0.7111 | 3000 | 0.0004 | - |
0.7229 | 3050 | 0.0004 | - |
0.7348 | 3100 | 0.0005 | - |
0.7466 | 3150 | 0.0005 | - |
0.7585 | 3200 | 0.0005 | - |
0.7703 | 3250 | 0.0004 | - |
0.7822 | 3300 | 0.0004 | - |
0.7940 | 3350 | 0.0004 | - |
0.8059 | 3400 | 0.0004 | - |
0.8177 | 3450 | 0.0004 | - |
0.8296 | 3500 | 0.0004 | - |
0.8414 | 3550 | 0.0004 | - |
0.8533 | 3600 | 0.0004 | - |
0.8651 | 3650 | 0.0004 | - |
0.8770 | 3700 | 0.0004 | - |
0.8888 | 3750 | 0.0004 | - |
0.9007 | 3800 | 0.0004 | - |
0.9125 | 3850 | 0.0004 | - |
0.9244 | 3900 | 0.0005 | - |
0.9362 | 3950 | 0.0004 | - |
0.9481 | 4000 | 0.0004 | - |
0.9599 | 4050 | 0.0004 | - |
0.9718 | 4100 | 0.0004 | - |
0.9836 | 4150 | 0.0004 | - |
0.9955 | 4200 | 0.0004 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.5.1
- Transformers: 4.38.1
- PyTorch: 2.1.0+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}