jamiehudson commited on
Commit
77e0f2f
1 Parent(s): 7a40c18

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ widget:
14
+ - text: man, product/whatever is my new best friend. i like product but the integration
15
+ of product into office and product is a lot of fun. i just spent the day feeding
16
+ it my training presentation i'm preparing in my day job and it was very helpful.
17
+ almost better than humans.
18
+ - text: that's great news! product is the perfect platform to share these advanced
19
+ product prompts and help more users get the most out of it!
20
+ - text: after only one week's trial of the new product with brand enabled, i have
21
+ replaced my default browser product that i was using for more than 7 years with
22
+ new product. i no longer need to spend a lot of time finding answers from a bunch
23
+ of search results and web pages. it's amazing
24
+ - text: very impressive. brand is finally fighting back. i am just a little worried
25
+ about the scalability of such a high context window size, since even in their
26
+ demos it took quite a while to process everything. regardless, i am very interested
27
+ in seeing what types of capabilities a >1m token size window can unleash.
28
+ - text: product the way it shows the sources is so fucking cool, this new ai is amazing
29
+ pipeline_tag: text-classification
30
+ inference: true
31
+ base_model: BAAI/bge-base-en-v1.5
32
+ model-index:
33
+ - name: SetFit with BAAI/bge-base-en-v1.5
34
+ results:
35
+ - task:
36
+ type: text-classification
37
+ name: Text Classification
38
+ dataset:
39
+ name: Unknown
40
+ type: unknown
41
+ split: test
42
+ metrics:
43
+ - type: accuracy
44
+ value: 0.7876447876447876
45
+ name: Accuracy
46
+ - type: f1
47
+ value:
48
+ - 0.3720930232558139
49
+ - 0.4528301886792453
50
+ - 0.8720379146919431
51
+ name: F1
52
+ - type: precision
53
+ value:
54
+ - 0.23529411764705882
55
+ - 0.3
56
+ - 0.9945945945945946
57
+ name: Precision
58
+ - type: recall
59
+ value:
60
+ - 0.8888888888888888
61
+ - 0.9230769230769231
62
+ - 0.7763713080168776
63
+ name: Recall
64
+ ---
65
+
66
+ # SetFit with BAAI/bge-base-en-v1.5
67
+
68
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
69
+
70
+ The model has been trained using an efficient few-shot learning technique that involves:
71
+
72
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
73
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
74
+
75
+ ## Model Details
76
+
77
+ ### Model Description
78
+ - **Model Type:** SetFit
79
+ - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
80
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
81
+ - **Maximum Sequence Length:** 512 tokens
82
+ - **Number of Classes:** 3 classes
83
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
84
+ <!-- - **Language:** Unknown -->
85
+ <!-- - **License:** Unknown -->
86
+
87
+ ### Model Sources
88
+
89
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
90
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
91
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
92
+
93
+ ### Model Labels
94
+ | Label | Examples |
95
+ |:--------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
96
+ | neither | <ul><li>'product cloud fails to cash in on product - as enterprises optimize cloud spending, product has registered its slowest growth in three years.'</li><li>'what do those things have to do with product? and its funny youre trying to argue facts by bringing your god into this.'</li><li>'your question didn\'t mean what you think it meant. it answered correctly to your question, which i also read as "hey brand, can you forget my loved ones?"'</li></ul> |
97
+ | peak | <ul><li>'chatbrandandme product brand product dang, my product msftadvertising experience is already so smooth and satisfying wow. they even gave me a free landing page for my product and product. i love msftadvertising and product for buying out brand and making gpt my best friend even more'</li><li>'i asked my physics teacher for help on a question i didnt understand on a test and she sent me back a 5 slide product with audio explaining each part of the question. she 100% is my fav teacher now.'</li><li>'brand!! it helped me finish my resume. i just asked it if it could write my resume based on horribly written descriptions i came up with. and it made it all pretty:)'</li></ul> |
98
+ | pit | <ul><li>'do not upgrade to product, it is a complete joke of an operating system. all of my xproduct programs are broken, none of my gpus work correctly, even after checking the bios and drivers, and now file explorer crashes upon startup, basically locking up the whole computer!'</li><li>'yes, and it would be great if product stops changing the format of data from other sources automatically, that is really annoying when 10-1-2 becomes "magically and wrongly" 2010/01/02. we are in the age of data and product just cannot handle them well..'</li><li>'it\'s a pity that the *product* doesn\'t work such as the "*normal chat*" does, but with 18,000 chars lim. hopefully, the will aim to make such upgrade, although more memory costly.'</li></ul> |
99
+
100
+ ## Evaluation
101
+
102
+ ### Metrics
103
+ | Label | Accuracy | F1 | Precision | Recall |
104
+ |:--------|:---------|:-------------------------------------------------------------|:-----------------------------------------------|:-------------------------------------------------------------|
105
+ | **all** | 0.7876 | [0.3720930232558139, 0.4528301886792453, 0.8720379146919431] | [0.23529411764705882, 0.3, 0.9945945945945946] | [0.8888888888888888, 0.9230769230769231, 0.7763713080168776] |
106
+
107
+ ## Uses
108
+
109
+ ### Direct Use for Inference
110
+
111
+ First install the SetFit library:
112
+
113
+ ```bash
114
+ pip install setfit
115
+ ```
116
+
117
+ Then you can load this model and run inference.
118
+
119
+ ```python
120
+ from setfit import SetFitModel
121
+
122
+ # Download from the 🤗 Hub
123
+ model = SetFitModel.from_pretrained("jamiehudson/725_32batch_150_sample")
124
+ # Run inference
125
+ preds = model("product the way it shows the sources is so fucking cool, this new ai is amazing")
126
+ ```
127
+
128
+ <!--
129
+ ### Downstream Use
130
+
131
+ *List how someone could finetune this model on their own dataset.*
132
+ -->
133
+
134
+ <!--
135
+ ### Out-of-Scope Use
136
+
137
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
138
+ -->
139
+
140
+ <!--
141
+ ## Bias, Risks and Limitations
142
+
143
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
144
+ -->
145
+
146
+ <!--
147
+ ### Recommendations
148
+
149
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
150
+ -->
151
+
152
+ ## Training Details
153
+
154
+ ### Training Set Metrics
155
+ | Training set | Min | Median | Max |
156
+ |:-------------|:----|:--------|:----|
157
+ | Word count | 9 | 37.1711 | 98 |
158
+
159
+ | Label | Training Sample Count |
160
+ |:--------|:----------------------|
161
+ | pit | 150 |
162
+ | peak | 150 |
163
+ | neither | 150 |
164
+
165
+ ### Training Hyperparameters
166
+ - batch_size: (32, 32)
167
+ - num_epochs: (1, 1)
168
+ - max_steps: -1
169
+ - sampling_strategy: oversampling
170
+ - body_learning_rate: (2e-05, 1e-05)
171
+ - head_learning_rate: 0.01
172
+ - loss: CosineSimilarityLoss
173
+ - distance_metric: cosine_distance
174
+ - margin: 0.25
175
+ - end_to_end: False
176
+ - use_amp: False
177
+ - warmup_proportion: 0.1
178
+ - seed: 42
179
+ - eval_max_steps: -1
180
+ - load_best_model_at_end: False
181
+
182
+ ### Training Results
183
+ | Epoch | Step | Training Loss | Validation Loss |
184
+ |:------:|:----:|:-------------:|:---------------:|
185
+ | 0.0000 | 1 | 0.2383 | - |
186
+ | 0.0119 | 50 | 0.2395 | - |
187
+ | 0.0237 | 100 | 0.2129 | - |
188
+ | 0.0356 | 150 | 0.1317 | - |
189
+ | 0.0474 | 200 | 0.0695 | - |
190
+ | 0.0593 | 250 | 0.01 | - |
191
+ | 0.0711 | 300 | 0.0063 | - |
192
+ | 0.0830 | 350 | 0.0028 | - |
193
+ | 0.0948 | 400 | 0.0026 | - |
194
+ | 0.1067 | 450 | 0.0021 | - |
195
+ | 0.1185 | 500 | 0.0018 | - |
196
+ | 0.1304 | 550 | 0.0016 | - |
197
+ | 0.1422 | 600 | 0.0014 | - |
198
+ | 0.1541 | 650 | 0.0015 | - |
199
+ | 0.1659 | 700 | 0.0013 | - |
200
+ | 0.1778 | 750 | 0.0012 | - |
201
+ | 0.1896 | 800 | 0.0012 | - |
202
+ | 0.2015 | 850 | 0.0012 | - |
203
+ | 0.2133 | 900 | 0.0011 | - |
204
+ | 0.2252 | 950 | 0.0011 | - |
205
+ | 0.2370 | 1000 | 0.0009 | - |
206
+ | 0.2489 | 1050 | 0.001 | - |
207
+ | 0.2607 | 1100 | 0.0009 | - |
208
+ | 0.2726 | 1150 | 0.0008 | - |
209
+ | 0.2844 | 1200 | 0.0008 | - |
210
+ | 0.2963 | 1250 | 0.0009 | - |
211
+ | 0.3081 | 1300 | 0.0008 | - |
212
+ | 0.3200 | 1350 | 0.0007 | - |
213
+ | 0.3318 | 1400 | 0.0007 | - |
214
+ | 0.3437 | 1450 | 0.0007 | - |
215
+ | 0.3555 | 1500 | 0.0006 | - |
216
+ | 0.3674 | 1550 | 0.0007 | - |
217
+ | 0.3792 | 1600 | 0.0007 | - |
218
+ | 0.3911 | 1650 | 0.0008 | - |
219
+ | 0.4029 | 1700 | 0.0006 | - |
220
+ | 0.4148 | 1750 | 0.0006 | - |
221
+ | 0.4266 | 1800 | 0.0006 | - |
222
+ | 0.4385 | 1850 | 0.0006 | - |
223
+ | 0.4503 | 1900 | 0.0006 | - |
224
+ | 0.4622 | 1950 | 0.0006 | - |
225
+ | 0.4740 | 2000 | 0.0006 | - |
226
+ | 0.4859 | 2050 | 0.0005 | - |
227
+ | 0.4977 | 2100 | 0.0006 | - |
228
+ | 0.5096 | 2150 | 0.0006 | - |
229
+ | 0.5215 | 2200 | 0.0005 | - |
230
+ | 0.5333 | 2250 | 0.0005 | - |
231
+ | 0.5452 | 2300 | 0.0005 | - |
232
+ | 0.5570 | 2350 | 0.0006 | - |
233
+ | 0.5689 | 2400 | 0.0005 | - |
234
+ | 0.5807 | 2450 | 0.0005 | - |
235
+ | 0.5926 | 2500 | 0.0006 | - |
236
+ | 0.6044 | 2550 | 0.0006 | - |
237
+ | 0.6163 | 2600 | 0.0005 | - |
238
+ | 0.6281 | 2650 | 0.0005 | - |
239
+ | 0.6400 | 2700 | 0.0005 | - |
240
+ | 0.6518 | 2750 | 0.0005 | - |
241
+ | 0.6637 | 2800 | 0.0005 | - |
242
+ | 0.6755 | 2850 | 0.0005 | - |
243
+ | 0.6874 | 2900 | 0.0005 | - |
244
+ | 0.6992 | 2950 | 0.0004 | - |
245
+ | 0.7111 | 3000 | 0.0004 | - |
246
+ | 0.7229 | 3050 | 0.0004 | - |
247
+ | 0.7348 | 3100 | 0.0005 | - |
248
+ | 0.7466 | 3150 | 0.0005 | - |
249
+ | 0.7585 | 3200 | 0.0005 | - |
250
+ | 0.7703 | 3250 | 0.0004 | - |
251
+ | 0.7822 | 3300 | 0.0004 | - |
252
+ | 0.7940 | 3350 | 0.0004 | - |
253
+ | 0.8059 | 3400 | 0.0004 | - |
254
+ | 0.8177 | 3450 | 0.0004 | - |
255
+ | 0.8296 | 3500 | 0.0004 | - |
256
+ | 0.8414 | 3550 | 0.0004 | - |
257
+ | 0.8533 | 3600 | 0.0004 | - |
258
+ | 0.8651 | 3650 | 0.0004 | - |
259
+ | 0.8770 | 3700 | 0.0004 | - |
260
+ | 0.8888 | 3750 | 0.0004 | - |
261
+ | 0.9007 | 3800 | 0.0004 | - |
262
+ | 0.9125 | 3850 | 0.0004 | - |
263
+ | 0.9244 | 3900 | 0.0005 | - |
264
+ | 0.9362 | 3950 | 0.0004 | - |
265
+ | 0.9481 | 4000 | 0.0004 | - |
266
+ | 0.9599 | 4050 | 0.0004 | - |
267
+ | 0.9718 | 4100 | 0.0004 | - |
268
+ | 0.9836 | 4150 | 0.0004 | - |
269
+ | 0.9955 | 4200 | 0.0004 | - |
270
+
271
+ ### Framework Versions
272
+ - Python: 3.10.12
273
+ - SetFit: 1.0.3
274
+ - Sentence Transformers: 2.5.1
275
+ - Transformers: 4.38.1
276
+ - PyTorch: 2.1.0+cu121
277
+ - Datasets: 2.18.0
278
+ - Tokenizers: 0.15.2
279
+
280
+ ## Citation
281
+
282
+ ### BibTeX
283
+ ```bibtex
284
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
285
+ doi = {10.48550/ARXIV.2209.11055},
286
+ url = {https://arxiv.org/abs/2209.11055},
287
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
288
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
289
+ title = {Efficient Few-Shot Learning Without Prompts},
290
+ publisher = {arXiv},
291
+ year = {2022},
292
+ copyright = {Creative Commons Attribution 4.0 International}
293
+ }
294
+ ```
295
+
296
+ <!--
297
+ ## Glossary
298
+
299
+ *Clearly define terms in order to be accessible across audiences.*
300
+ -->
301
+
302
+ <!--
303
+ ## Model Card Authors
304
+
305
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
306
+ -->
307
+
308
+ <!--
309
+ ## Model Card Contact
310
+
311
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
312
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.38.1",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "pit",
5
+ "peak",
6
+ "neither"
7
+ ]
8
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0d81266419174d40321937571cb78326a0493efd3eaa9b8dd9d48fe7abeccb4
3
+ size 437951328
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8ead2cc05d2b228e1be7e7df602dc37612241c3d1e4fa951c9d849263aa260a
3
+ size 19327
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff