|
--- |
|
library_name: transformers |
|
--- |
|
|
|
This is the HF transformers implementation for RT-DETRv2 |
|
|
|
Model: RT-DETRv2-S |
|
RT-DETRv2, an improved Real-Time DEtection TRansformer (RT-DETR). RT-DETRv2 builds upon the previous state-of-the-art real-time detector, RT-DETR, and opens up a set of bag-of-freebies for flexibility and practicality, as well as optimizing the training strategy to achieve enhanced performance. To improve the flexibility, we suggest setting a distinct number of sampling points for features at different scales in the deformable attention to achieve selective multi-scale feature extraction by the decoder. |
|
|
|
Usage: |
|
|
|
```python |
|
import torch |
|
import requests |
|
|
|
from PIL import Image |
|
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor |
|
|
|
url = 'http://images.cocodataset.org/val2017/000000039769.jpg' |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
image_processor = RTDetrImageProcessor.from_pretrained("jadechoghari/RT-DETRv2") |
|
model = RTDetrForObjectDetection.from_pretrained("jadechoghari/RT-DETRv2") |
|
|
|
inputs = image_processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
results = image_processor.post_process_object_detection(outputs, target_sizes=torch.tensor([image.size[::-1]]), threshold=0.3) |
|
|
|
for result in results: |
|
for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]): |
|
score, label = score.item(), label_id.item() |
|
box = [round(i, 2) for i in box.tolist()] |
|
print(f"{model.config.id2label[label]}: {score:.2f} {box}") |